阅读理解:
在平面直角坐标系中,点 M 的坐标为 ( x 1 , y 1 ) ,点 N 的坐标为 ( x 2 , y 2 ) ,且 x 1 ≠ x 2 , y 1 ≠ y 2 ,若 M 、 N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 M 、 N 的"相关矩形".如图1中的矩形为点 M 、 N 的"相关矩形".
(1)已知点 A 的坐标为 ( 2 , 0 ) .
①若点 B 的坐标为 ( 4 , 4 ) ,则点 A 、 B 的"相关矩形"的周长为 ;
②若点 C 在直线 x = 4 上,且点 A 、 C 的"相关矩形"为正方形,求直线 AC 的解析式;
(2)已知点 P 的坐标为 ( 3 , − 4 ) ,点 Q 的坐标为 ( 6 , − 2 ) 若使函数 y = k x 的图象与点 P 、 Q 的"相关矩形"有两个公共点,直接写出 k 的取值.
为落实省新课改精神,我市各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)
根据图中信息,解答下列问题:
(1)求被调查学生的总人数;
(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;
(3)根据调查结果,请你给学校提一条合理化建议.
太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面 ΔABC 如图2所示, BC = 10 米, ∠ ABC = ∠ ACB = 36 ° ,改建后顶点 D 在 BA 的延长线上,且 ∠ BDC = 90 ° ,求改建后南屋面边沿增加部分 AD 的长.(结果精确到0.1米)
(参考数据: sin 18 ° ≈ 0 . 31 , cos 18 ° ≈ 0 . 95 . tan 18 ° ≈ 0 . 32 , sin 36 ° ≈ 0 . 59 . cos 36 ° ≈ 0 . 81 , tan 36 ° ≈ 0 . 73 )
数学活动课上,某学习小组对有一内角为 120 ° 的平行四边形 ABCD ( ∠ BAD = 120 ° ) 进行探究:将一块含 60 ° 的直角三角板如图放置在平行四边形 ABCD 所在平面内旋转,且 60 ° 角的顶点始终与点 C 重合,较短的直角边和斜边所在的两直线分别交线段 AB , AD 于点 E , F (不包括线段的端点).
(1)初步尝试
如图1,若 AD = AB ,求证:① ΔBCE ≅ ΔACF ,② AE + AF = AC ;
(2)类比发现
如图2,若 AD = 2 AB ,过点 C 作 CH ⊥ AD 于点 H ,求证: AE = 2 FH ;
(3)深入探究
如图3,若 AD = 3 AB ,探究得: AE + 3 AF AC 的值为常数 t ,则 t = .
如图,已知二次函数 y = − x 2 + bx + c ( b , c 为常数)的图象经过点 A ( 3 , 1 ) ,点 C ( 0 , 4 ) ,顶点为点 M ,过点 A 作 AB / / x 轴,交 y 轴于点 D ,交该二次函数图象于点 B ,连接 BC .
(1)求该二次函数的解析式及点 M 的坐标;
(2)若将该二次函数图象向下平移 m ( m > 0 ) 个单位,使平移后得到的二次函数图象的顶点落在 ΔABC 的内部(不包括 ΔABC 的边界),求 m 的取值范围;
(3)点 P 是直线 AC 上的动点,若点 P ,点 C ,点 M 所构成的三角形与 ΔBCD 相似,请直接写出所有点 P 的坐标(直接写出结果,不必写解答过程).
随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.
(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;
(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间 ( 1 个养老床位),双人间 ( 2 个养老床位),三人间 ( 3 个养老床位),因实际需要,单人间房间数在10至30之间(包括10和 30 ) ,且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为 t .
①若该养老中心建成后可提供养老床位200个,求 t 的值;
②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?