阅读理解:
在平面直角坐标系中,点 M 的坐标为 ( x 1 , y 1 ) ,点 N 的坐标为 ( x 2 , y 2 ) ,且 x 1 ≠ x 2 , y 1 ≠ y 2 ,若 M 、 N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 M 、 N 的"相关矩形".如图1中的矩形为点 M 、 N 的"相关矩形".
(1)已知点 A 的坐标为 ( 2 , 0 ) .
①若点 B 的坐标为 ( 4 , 4 ) ,则点 A 、 B 的"相关矩形"的周长为 ;
②若点 C 在直线 x = 4 上,且点 A 、 C 的"相关矩形"为正方形,求直线 AC 的解析式;
(2)已知点 P 的坐标为 ( 3 , − 4 ) ,点 Q 的坐标为 ( 6 , − 2 ) 若使函数 y = k x 的图象与点 P 、 Q 的"相关矩形"有两个公共点,直接写出 k 的取值.
(本题8分)解方程组: (1) (2)
(本题10分)如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P,Q同时出发,当点Q运动到点C时,P,Q运动停止,设运动时间为t. (1)求CD的长; (2)当四边形PBQD为平行四边形时,求四边形PBQD的周长; (3)在点P,Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.
(本题8分)某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要赢利1200元,且让顾客得到实惠,每件衬衫应降价多少元? (2)要使商场平均每天赢利最多,则每件衬衫应降价多少元?
(本题8分)某校初三(1)班进行立定跳远训练,以下是李超和陈辉同学六次的训练成绩(单位:m)
(1)李超和陈辉的平均成绩分别是多少? (2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?为什么? (3)若预知参加级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?为什么?
(本题8分)在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE. (1)证明DE∥CB; (2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.