已知反比例函数 y = m x 的图象经过点 A ( 2 , 3 ) .
(1)求该反比例函数的表达式;
(2)如图,在反比例函数 y = m x 的图象上点 A 的右侧取点 C ,过点 C 作 x 轴的垂线交 x 轴于点 H ,过点 A 作 y 轴的垂线交直线 CH 于点 D .
①过点 A ,点 C 分别作 x 轴, y 轴的垂线,两线相交于点 B ,求证: O , B , D 三点共线;
②若 AC = 2 OA ,求证: ∠ AOD = 2 ∠ DOH .
(南宁)如图,AB是⊙O的直径,C,G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F. (1)求证:CD是⊙O的切线. (2)若,求∠E的度数. (3)连接AD,在(2)的条件下,若CD=,求AD的长.
(南宁)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米. (1)用含a的式子表示花圃的面积. (2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽. (3)已知某园林公司修建通道、花圃的造价(元)、(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?
(贺州)如图,已知抛物线与直线AB相交于A(﹣3,0),B(0,3)两点. (1)求这条抛物线的解析式; (2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标; (3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.
(河池)如图1,抛物线与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0). (1)写出D的坐标和直线l的解析式; (2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值; (3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
(河池)如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE. (1)求证:FD是⊙O的切线; (2)若AF=8,tan∠BDF=,求EF的长.