如图,在直角三角形 ABC 中, ∠ ACB = 90 ° ,点 H 是 ΔABC 的内心,
AH 的延长线和三角形 ABC 的外接圆 O 相交于点 D ,连接 DB .
(1)求证: DH = DB ;
(2)过点 D 作 BC 的平行线交 AC 、 AB 的延长线分别于点 E 、 F ,已知 CE = 1 ,圆 O 的直径为5.
①求证: EF 为圆 O 的切线;
②求 DF 的长.
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD. (1)求证:DB平分∠ADC; (2)若BE=3,ED=6,求AB的长.
抛物线与x轴交与,两点, (1)求该抛物线的解析式; (2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC削进到E 处,问BE至少是多少米(结果保留根号)?
如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G. (1)求证:BC=DE; (2)如果∠ABC=∠CBD ,那么线段FD是线段FG和FB的比例中项吗?为什么?
如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,求折痕CE的长.