初中数学

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E G 分别是边 AD BC 的中点, AF = 1 4 AB

(1)求证: EF AG

(2)若点 F G 分别在射线 AB BC 上同时向右、向上运动,点 G 运动速度是点 F 运动速度的2倍, EF AG 是否成立(只写结果,不需说明理由)?

(3)正方形 ABCD 的边长为4, P 是正方形 ABCD 内一点,当 S ΔPAB = S ΔOAB ,求 ΔPAB 周长的最小值.

来源:2017年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔBEC 均为等腰直角三角形,且 ACB = BEC = 90 ° AC = 4 2 ,点 P 为线段 BE 延长线上一点,连接 CP CP 为直角边向下作等腰直角 ΔCPD ,线段 BE CD 相交于点 F

(1)求证: PC CD = CE CB

(2)连接 BD ,请你判断 AC BD 有什么位置关系?并说明理由;

(3)设 PE = x ΔPBD 的面积为 S ,求 S x 之间的函数关系式.

来源:2016年四川省眉山市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 内接于 O A BDC ̂ 的中点, AE AC A ,与 O CB 的延长线交于点 F E ,且 BF ̂ = AD ̂

(1)求证: ΔADC ΔEBA

(2)如果 AB = 8 CD = 5 ,求 tan CAD 的值.

来源:2016年四川省凉山州中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在直角坐标系 xOy 中,矩形 OABC 的顶点 A C 分别在 x 轴和 y 轴正半轴上,点 B 的坐标是 ( 5 , 2 ) ,点 P CB 边上一动点(不与点 C 、点 B 重合),连接 OP AP ,过点 O 作射线 OE AP 的延长线于点 E ,交 CB 边于点 M ,且 AOP = COM ,令 CP = x MP = y

(1)当 x 为何值时, OP AP

(2)求 y x 的函数关系式,并写出 x 的取值范围;

(3)在点 P 的运动过程中,是否存在 x ,使 ΔOCM 的面积与 ΔABP 的面积之和等于 ΔEMP 的面积?若存在,请求 x 的值;若不存在,请说明理由.

来源:2016年四川省乐山市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图, AC BD 交于点 O OA = OD ABO = DCO E BC 延长线上一点,过点 E EF / / CD ,交 BD 的延长线于点 F

(1)求证 ΔAOB ΔDOC

(2)若 AB = 2 BC = 3 CE = 1 ,求 EF 的长.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 O 的半径为 6 cm ,射线 PM 经过点 O OP = 10 cm ,射线 PN O 相切于点 Q A B 两点同时从点 P 出发,点 A 5 cm / s 的速度沿射线 PM 方向运动,点 B 4 cm / s 的速度沿射线 PN 方向运动,设运动时间为 ts

(1)求 PQ 的长;

(2)当直线 AB O 相切时,求证: AB PN

(3)当 t 为何值时,直线 AB O 相切?

来源:2016年四川省广元市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,点 D 是等边三角形 ABC 外接圆上一点. M BD 上一点,且满足 DM = DC ,点 E AC BD 的交点.

(1)求证: CM / / AD

(2)如果 AD = 1 CM = 2 .求线段 BD 的长及 ΔBCE 的面积.

来源:2016年四川省德阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,已知 AB 为半圆 O 的直径, C 为半圆 O 上一点,连接 AC BC ,过点 O OD AC 于点 D ,过点 A 作半圆 O 的切线交 OD 的延长线于点 E ,连接 BD 并延长交 AE 于点 F

(1)求证: AE · BC = AD · AB

(2)若半圆 O 的直径为10, sin BAC = 3 5 ,求 AF 的长.

来源:2016年四川省达州市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,点 E 是正方形 ABCD 的边 BC 延长线上一点,连接 DE ,过顶点 B BF DE ,垂足为 F BF 分别交 AC H ,交 CD G

(1)求证: BG = DE

(2)若点 G CD 的中点,求 HG GF 的值.

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图①, ΔABC 中, ABC = 45 ° AH BC 于点 H ,点 D AH 上,且 DH = CH ,连接 BD

(1)求证: BD = AC

(2)将 ΔBHD 绕点 H 旋转,得到 ΔEHF (点 B D 分别与点 E F 对应),连接 AE

①如图②,当点 F 落在 AC 上时, ( F 不与 C 重合),若 BC = 4 tan C = 3 ,求 AE 的长;

②如图③,当 ΔEHF 是由 ΔBHD 绕点 H 逆时针旋转 30 ° 得到时,设射线 CF AE 相交于点 G ,连接 GH ,试探究线段 GH EF 之间满足的等量关系,并说明理由.

来源:2016年四川省成都市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 CB 为半径作 C ,交 AC 于点 D ,交 AC 的延长线于点 E ,连接 BD BE

(1)求证: ΔABD ΔAEB

(2)当 AB BC = 4 3 时,求 tan E

(3)在(2)的条件下,作 BAC 的平分线,与 BE 交于点 F ,若 AF = 2 ,求 C 的半径.

来源:2016年四川省成都市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

如图,点 C 在以 AB 为直径的 O 上,点 D 是半圆 AB 的中点,连接 AC BC AD BD .过点 D DH / / AB CB 的延长线于点 H

(1)求证:直线 DH O 的切线;

(2)若 AB = 10 BC = 6 ,求 AD BH 的长.

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, O Rt Δ ABC 的直角边 AC 和斜边 AB 分别相切于点 C D ,与边 BC 相交于点 F OA CD 相交于点 E ,连接 FE 并延长交 AC 边于点 G

(1)求证: DF / / AO

(2)若 AC = 6 AB = 10 ,求 CG 的长.

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题