如图,已知四边形 ABCD 内接于 ⊙ O , A 是 BDC ̂ 的中点, AE ⊥ AC 于 A ,与 ⊙ O 及 CB 的延长线交于点 F 、 E ,且 BF ̂ = AD ̂ .
(1)求证: ΔADC ∽ ΔEBA ;
(2)如果 AB = 8 , CD = 5 ,求 tan ∠ CAD 的值.
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是的切线,连接OQ.求的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被截得的弦长.
不透明的口袋里装有红、黄、蓝三种颜色的小球(其它一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.⑴.求袋中黄球的个数;⑵.第一次摸出一个球(不放回).第二次再摸出一个球,请用树形图或列表法求两次摸出的都是红球的概率。
如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。(1)求证:AD=DC(2)求证:DE是的切线(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。
在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小明围出了一个面积为600㎝2的矩形,请你算一算,他围成的矩形的边长是多少?(2)小明想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.
已知关于x的一元二次方程mx 2-(3m+2)x+2m+2=0(m>0)(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1、x2(x1<x2),若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;(3)在(2)的条件下,结合函数的图像回答:当自变量m的取值范围满足什么条件时,y≤2m.