如图,在 Rt Δ ABC 中, ∠ ABC = 90 ° ,以 CB 为半径作 ⊙ C ,交 AC 于点 D ,交 AC 的延长线于点 E ,连接 BD , BE .
(1)求证: ΔABD ∽ ΔAEB ;
(2)当 AB BC = 4 3 时,求 tan E ;
(3)在(2)的条件下,作 ∠ BAC 的平分线,与 BE 交于点 F ,若 AF = 2 ,求 ⊙ C 的半径.
在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.
如图,在平面直角坐标系中,抛物线y=ax2+bx-4与x轴交于点A (-2,0)和点B,与y轴交于点C, 直线x=1是该抛物线的对称轴。(1)求抛物线的解析式;(2)若两动点M, H分别从点A,B 以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0),求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值。
如图,C是以AB为直径的上一点,过点O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.(1)求证:PC是⊙O的切线;(2)若AF=1,OA=, 求PC的长。
城市规划期间,欲拆除一电线杆AB(如图所示),已知距电线杆AB水平距离14米的D处有一大坝,背水坡CD的坡度i=2:1,坝高CF为2米,在坝顶C处测得杆顶A的仰角为30°,D,E之间是宽为2米的人行道。((1)求BF的长度;(2)在拆除电线杆AB时,为确保行人安全,是否需将此人行道封上?
某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A,B两种产品共50件,已知生产1件A种产品需甲种原料9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原料4千克,乙种原料10千克,可获利1200元,设工厂生产A,B两种产品可获总利润是y元,其中甲种产品的生产件数是x, (1)写出y与x之间的函数关系式;(2)如何安排A,B两种产品的生产件数,使总利润y有最大值,并求出y的最大值。