如图,在正方形 ABCD 中,点 E 、 G 分别是边 AD 、 BC 的中点, AF = 1 4 AB .
(1)求证: EF ⊥ AG ;
(2)若点 F 、 G 分别在射线 AB 、 BC 上同时向右、向上运动,点 G 运动速度是点 F 运动速度的2倍, EF ⊥ AG 是否成立(只写结果,不需说明理由)?
(3)正方形 ABCD 的边长为4, P 是正方形 ABCD 内一点,当 S ΔPAB = S ΔOAB ,求 ΔPAB 周长的最小值.
去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的 12 % .
[小题1]求该商店去年“十一黄金周”这七天的总营业额;
[小题2]去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.
如图,在直角梯形 ABCD 中, AB / / DC , ∠ DAB = 90 ° , AB = 8 , CD = 5 , BC = 3 5 .
(1)求梯形 ABCD 的面积;
(2)联结 BD ,求 ∠ DBC 的正切值.
[小题1]求梯形 ABCD 的面积;
[小题2]联结 BD ,求 ∠ DBC 的正切值.
解不等式组: 10 x > 7 x + 6 , x - 1 < x + 7 3 ·
计算: 27 1 3 + 1 5 + 2 - ( 1 2 ) - 2 + | 3 - 5 | .
综合与探究
如图,抛物线 y = 1 4 x 2 - x - 3 与 x 轴交于 A , B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .直线 l 与抛物线交于 A , D 两点,与 y 轴交于点 E ,点 D 的坐标为 ( 4 , - 3 ) .
(1)请直接写出 A , B 两点的坐标及直线 l 的函数表达式;
(2)若点 P 是抛物线上的点,点 P 的横坐标为 m ( m ⩾ 0 ) ,过点 P 作 PM ⊥ x 轴,垂足为 M . PM 与直线 l 交于点 N ,当点 N 是线段 PM 的三等分点时,求点 P 的坐标;
(3)若点 Q 是 y 轴上的点,且 ∠ ADQ = 45 ° ,求点 Q 的坐标.