通过对下面数学模型的研究学习,解决问题.
【模型呈现】
如图,在 Rt Δ ABC , ∠ ACB = 90 ° ,将斜边 AB 绕点 A 顺时针旋转 90 ° 得到 AD ,过点 D 作 DE ⊥ AC 于点 E ,可以推理得到 ΔABC ≅ ΔDAE ,进而得到 AC = DE , BC = AE .
我们把这个数学模型称为“ K 型”.
推理过程如下:
【模型应用】
如图,在 Rt Δ ABC 内接于 ⊙ O , ∠ ACB = 90 ° , BC = 2 ,将斜边 AB 绕点 A 顺时针旋转一定的角度得到 AD ,过点 D 作 DE ⊥ AC 于点 E , ∠ DAE = ∠ ABC , DE = 1 ,连接 DO 交 ⊙ O 于点 F .
(1)求证: AD 是 ⊙ O 的切线;
(2)连接 FC 交 AB 于点 G ,连接 FB .求证: F G 2 = GO · GB .
如图,各组中的两个图形,哪些是相似的图形,哪些不是?
如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒。连接BM并延长交AG于N。 (1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由; (2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=NH; (3)过点M分别用AB、AD的垂线,垂足分别为E、F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值。
已知抛物线y=-x2-2x+a(a≠0)与y轴交于A,顶点为M,直线分别与x轴、y轴交于B、C两点,并且与直线MA相交于N点。 (1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标; (2)将△NAC沿着y轴翻折,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于D,连接CD。求a的值及△PCD的面积; (3)在抛物线y=-x2-2x+a(a>0)上是否存在点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由。
南海地质勘探队在南沙群岛的一个小岛发现很有价值的A、B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘费用1200元。 (1)设运送这些矿石的总运费为y元,若使用甲货船x艘,请写出y与x之间的函数关系式; (2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几中安排方案?哪种方案运费最低并求出最低费用。
阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46 (1)前10株西红柿秧上小西红柿个数的平均数是,中位数是,众数是; (2)若对这20个数按组距8进行分组,请补全频数分布表及频数分布直方图:
(3)通过频数分布直方图试分析此大棚中西红柿的长势。