如图所示,已知正方形 的顶点 为正方形 对角线 、 的交点,连接 、 .
(1)求证: ;
(2)若 ,正方形 的边长为2,线段 与线段 相交于点 , ,求正方形 的边长.
根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.
(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写"真"或"假" .
①四条边成比例的两个凸四边形相似; 命题)
②三个角分别相等的两个凸四边形相似; 命题)
③两个大小不同的正方形相似. 命题)
(2)如图1,在四边形 和四边形 中, , , .求证:四边形 与四边形 相似.
(3)如图2,四边形 中, , 与 相交于点 ,过点 作 分别交 , 于点 , .记四边形 的面积为 ,四边形 的面积为 ,若四边形 与四边形 相似,求 的值.
如图,在平行四边形中,连接对角线,延长至点,使,连接,分别交,交于点,.
(1)求证:;
(2)若,,求的长.
如图,在中,是斜边的中点,以为直径作圆交于点,延长至,使,连接、,交圆于点.
(1)判断四边形的形状,并说明理由;
(2)求证:;
(3)若,,求的长.
如图,内接于,,是的直径,与相交于点,过点作,分别交、的延长线于点、,连接.
(1)求证:是的切线;
(2)求证:.
如图,、、、、是上的5等分点,连接、、、、,得到一个五角星图形和五边形.
(1)计算的度数;
(2)连接,证明:;
(3)求证:.
如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点是轴上一动点,连接,过点作的垂线与轴交于点.
(1)求该抛物线的函数关系表达式;
(2)当点在线段(点不与、重合)上运动至何处时,线段的长有最大值?并求出这个最大值;
(3)在第四象限的抛物线上任取一点,连接、.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.
如图1,矩形中,点为边上的动点(不与,重合),把沿翻折,点的对应点为,延长交直线于点,再把折叠,使点的对应点落在上,折痕交直线于点.
(1)求证:△△;
(2)如图2,直线是矩形的对称轴,若点恰好落在直线上,试判断的形状,并说明理由;
(3)如图3,在(2)的条件下,点为内一点,且,试探究,,的数量关系.
如图,与的边相切于点,与、边分别交于点、,,是的直径.
(1)求证:是的切线;
(2)若,,求的长.
[问题探究]
(1)如图1,和均为等腰直角三角形,,点,,在同一直线上,连接,.
①请探究与之间的位置关系: ;
②若,,则线段的长为 ;
[拓展延伸]
(2)如图2,和均为直角三角形,,,,,.将绕点在平面内顺时针旋转,设旋转角为,作直线,连接,当点,,在同一直线上时,画出图形,并求线段的长.
如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度米,货厢底面距地面的高度米,坡面与地面的夹角,木箱的长为2米,高和宽都是1.6米.通过计算判断:当,木箱底部顶点与坡面底部点重合时,木箱上部顶点会不会触碰到汽车货厢顶部.
若二次函数的图象与轴、轴分别交于点、,且过点.
(1)求二次函数表达式;
(2)若点为抛物线上第一象限内的点,且,求点的坐标;
(3)在抛物线上下方)是否存在点,使?若存在,求出点到轴的距离;若不存在,请说明理由.
在矩形中,于点,点是边上一点.
(1)若平分,交于点,于点,如图①,证明四边形是菱形;
(2)若,如图②,求证:;
(3)在(2)的条件下,若,,求的长.
如图,内接于,为直径,作交于点,延长,交于点,过点作的切线,交于点.
(1)求证:;
(2)如果,,求弦的长.