如图,已知是的直径,,为圆上一点,且,连接,,,与交于点.
(1)求证:为的切线;
(2)若,求的值.
如图,和是有公共顶点的等腰直角三角形,.
(1)如图1,连接,,的延长线交于点,交于点,求证:;
(2)如图2,把绕点顺时针旋转,当点落在上时,连接,,的延长线交于点,若,,求的面积.
如图,是的直径,是的弦,过点作的切线,交的延长线于点,过点作于点,交的延长线于点.
(1)求证:;
(2)若,,求的半径.
如图1,在中,,,,点、分别是边、的中点,连接.将绕点逆时针方向旋转,记旋转角为.
(1)问题发现
①当时, ;
②当时, .
(2)拓展探究
试判断:当时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
绕点逆时针旋转至、、三点在同一条直线上时,求线段的长.
(1)如图1,菱形的顶点、在菱形的边上,且,请直接写出的结果(不必写计算过程)
(2)将图1中的菱形绕点旋转一定角度,如图2,求;
(3)把图2中的菱形都换成矩形,如图3,且,此时的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.
如图,在中,,以为直径的分别与,交于点,,过点作,垂足为点.
(1)求证:直线是的切线;
(2)求证:;
(3)若的半径为4,,求阴影部分的面积.
如图,的对角线、相交于点,经过,分别交、于点、,的延长线交的延长线于.
(1)求证:;
(2)若,,,求的长.
如图,内接于,直径交于点,延长至点,使,连接并延长交过点的切线于点,且满足,连接,若,.
(1)求证:;
(2)求的半径;
(3)求证:是的切线.
已知抛物线的对称轴为直线,其图象与轴相交于,两点,与轴相交于点.
(1)求,的值;
(2)直线与轴相交于点.
①如图1,若轴,且与线段及抛物线分别相交于点,,点关于直线的对称点为点,求四边形面积的最大值;
②如图2,若直线与线段相交于点,当时,求直线的表达式.
与相切于点,直线与相离,于点,且,与交于点,的延长线交直线于点.
(1)求证:;
(2)若的半径为3,求线段的长;
(3)若在上存在点,使是以为底边的等腰三角形,求的半径的取值范围.
如图,在正方形中,点是边上一点,以为边作正方形,与交于点,延长交于点,与交于点,连接.
(1)求证:;
(2)若,求的值;
(3)已知正方形的边长为1,点在运动过程中,的长能否为?请说明理由.
如图,在中,以为直径的交于点,连接,.
(1)求证:是的切线;
(2)若,,求点到的距离.
如图,是的直径,点为的中点,为的弦,且,垂足为,连接交于点,连接,,.
(1)求证:;
(2)若,求的长.
如图,一次函数的图象与反比例函数且的图象在第一象限交于点、,且该一次函数的图象与轴正半轴交于点,过、分别作轴的垂线,垂足分别为、.已知,.
(1)求的值和反比例函数的解析式;
(2)若点为一次函数图象上的动点,求长度的最小值.