如图,在中,,点在上,以线段的长为半径的与相切于点,分别交、于点、,连接并延长,交的延长线于点.
(1)求证:.
(2)已知的半径为3.
①若,则 .
②当 时,四边形为菱形.
如图,小明在笔直的河岸上的点处,以正对岸明显的标志点为参照点,设计出两种测量河宽的方案,绘制了相应的示意图,并用测角仪、卷尺及标杆测得一些数据如下:
(1)请你选择一种方案,结合示意图,简述测量过程;
(2)按照你选定的方案,求河宽.(参考数据:,
教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.
例2 如图,在中,,分别是边,的中点,,相交于点,求证:
证明:连结.
请根据教材提示,结合图①,写出完整的证明过程.
结论应用:在中,对角线、交于点,为边的中点,、交于点.
(1)如图②,若为正方形,且,则的长为 .
(2)如图③,连结交于点,若四边形的面积为,则的面积为 .
如图,在中,点在边上,点在边的延长线上,且,与交于点.
(1)求证:;
(2)若,,求的长.
如图,为的直径,为延长线上一点,是的切线,为切点,于点,交于点.
(1)求证:;
(2)若,,求的长.
如图1,△ABC中,BC=25,BC边上的高为20,将AB,AC分别n等分,连接两边对应的等分点,以这些连接线为一边做矩形,使这些矩形的边B1C1,B2C2,B3C3……的对应边分别为 B2C2,B3C3,B4C4……
(1)若n=5,如图2,求B3C3为一边的矩形的面积;
(2)若n=5,求所有矩形的面积和;
(3)当分为n等分时,你能用含有n的表达式表示所有矩形的面积和吗?
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
阅读:如图1,在△ABC中,BE是AC边上的中线, D是BC边上的一点,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
(1)的值为 ;
(2)参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.
求的值;
若CD=2,求BP的长.
如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.
(1)求证:△ABD∽△ACB;
(2)求线段CD的长.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
基本模型
如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.
(1)模型拓展:
如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
(年青海省西宁市)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.
(1)求证:AD是⊙O的切线;
(2)若sin∠ABM=,AM=6,求⊙O的半径.
(年贵州省遵义市)如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.
(1)求证:D是BC的中点;
(2)若DE=3,BD—AD=2,求⊙O的半径;
(3)在(2)的条件下,求弦AE的长.