如图,在四边形 中, , , , 交 于点 ,过点 作 ,垂足为 ,且 .
(1)求证:四边形 是菱形;
(2)若 ,求 的面积.
如图,在菱形 中, , 是对角线 上的两点,且 .
(1)求证: ;
(2)证明四边形 是菱形.
如图,已知 中, 是 的中点,过点 作 交 于点 ,过点 作 交 于点 ,连接 、 .
(1)求证:四边形 是菱形;
(2)若 , , ,求 的长.
如图,四边形 是平行四边形, 且分别交对角线 于点 , .
(1)求证: ;
(2)当四边形 分别是矩形和菱形时,请分别说出四边形 的形状.(无需说明理由)
如图,在正方形 中,对角线 , 相交于点 ,点 , 是对角线 上的两点,且 .连接 , , , .
(1)证明: .
(2)若 , ,求四边形 的周长.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
如图,四边形 是矩形, 、 分别是线段 、 上的点,点 是 与 的交点.若将 沿直线 折叠,则点 与点 重合.
(1)求证:四边形 是菱形;
(2)若 , ,求 的值.
将一个直角三角形纸片 放置在平面直角坐标系中,点 ,点 ,点 在第一象限, , ,点 在边 上(点 不与点 , 重合).
(Ⅰ)如图①,当 时,求点 的坐标;
(Ⅱ)折叠该纸片,使折痕所在的直线经过点 ,并与 轴的正半轴相交于点 ,且 ,点 的对应点为 ,设 .
①如图②,若折叠后△ 与 重叠部分为四边形, , 分别与边 相交于点 , ,试用含有 的式子表示 的长,并直接写出 的取值范围;
②若折叠后△ 与 重叠部分的面积为 ,当 时,求 的取值范围(直接写出结果即可).
如图,在 中, 的角平分线交 于点 , , .
(1)试判断四边形 的形状,并说明理由;
(2)若 ,且 ,求四边形 的面积.
如图,已知 的顶点坐标分别为 , , .动点 , 同时从 点出发, 沿 , 沿折线 ,均以每秒1个单位长度的速度移动,当一个动点到达终点 时,另一个动点也随之停止移动,移动的时间记为 秒.连接 .
(1)求直线 的解析式;
(2)移动过程中,将 沿直线 翻折,点 恰好落在 边上点 处,求此时 值及点 的坐标;
(3)当点 , 移动时,记 在直线 右侧部分的面积为 ,求 关于时间 的函数关系式.
如图,在平行四边形 中, ,点 是 的中点,连接 并延长,交 的延长线于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若 , ,求菱形 的面积.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
如图,在四边形 中, 与 相交于点 ,且 ,点 在 上,满足 .
(1)求证:四边形 是平行四边形;
(2)若 , , ,求四边形 的面积.