如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E 在 AB 的延长线上, CE ⊥ AB ,垂足为 E ,点 F 在 AD 的延长线上, CF ⊥ AD ,垂足为 F ,
(1)若 ∠ BAD = 60 ° ,求证:四边形 CEHF 是菱形;
(2)若 CE = 4 , ΔACE 的面积为16,求菱形 ABCD 的面积.
请完成下面的说明:(1)如图①所示,△ABC的外角平分线交于G,试说明∠BGC=90°-∠A.说明:根据三角形内角和等于180°,可知∠ABC+∠ACB=180°-∠_____.根据平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180°+∠______.根据角平分线的意义,可知∠2+∠3=(∠EBC+∠FCB)=(180°+∠_____)=90°+∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____.(2)如图②所示,若△ABC的内角平分线交于点I,试说明∠BIC=90°+∠A.(3)用(1),(2)的结论,你能说出∠BGC和∠BIC的关系吗?
如图所示,BE平分∠ABD,DE平分∠CDB,BE和DE相交于AC上一点E,如果∠BED=90°,试说明AB∥CD.
如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.
如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.