初中数学

如图,已知在中,分别是的中点,连结

(1)求证:四边形是平行四边形;

(2)若,求四边形的周长.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 交于点 E ,以 AB 为直径的 O 经过点 E ,与 AD 交于点 F G AD 延长线上一点,连接 BG ,交 AC 于点 H ,且 DBG = 1 2 BAD

(1)求证: BG O 的切线;

(2)若 CH = 3 tan DBG = 1 2 ,求 O 的直径.

来源:2020年辽宁省锦州市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图, ΔABD 中, ABD = ADB

(1)作点 A 关于 BD 的对称点 C ;(要求:尺规作图,不写作法,保留作图痕迹)

(2)在(1)所作的图中,连接 BC DC ,连接 AC ,交 BD 于点 O

①求证:四边形 ABCD 是菱形;

②取 BC 的中点 E ,连接 OE ,若 OE = 13 2 BD = 10 ,求点 E AD 的距离.

来源:2020年广东省广州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

能够完全重合的平行四边形纸片 ABCD AEFG 按图①方式摆放,其中 AD = AG = 5 AB = 9 .点 D G 分别在边 AE AB 上, CD FG 相交于点 H

【探究】求证:四边形 AGHD 是菱形.

【操作一】固定图①中的平行四边形纸片 ABCD ,将平行四边形纸片 AEFG 绕着点 A 顺时针旋转一定的角度,使点 F 与点 C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为       

【操作二】将图②中的平行四边形纸片 AEFG 绕着点 A 继续顺时针旋转一定的角度,使点 E 与点 B 重合,连接 DG CF ,如图③,若 sin BAD = 4 5 ,则四边形 DCFG 的面积为   

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,是以为底的等腰三角形,是边上的高,点分别是的中点.

(1)求证:四边形是菱形;

(2)如果四边形的周长为12,两条对角线的和等于7,求四边形的面积

来源:2017年云南省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E F 分别是 AB BC 的中点, CE AB ,垂足为 E AF BC ,垂足为 F AF CE 相交于点 G

(1)证明: ΔCFG ΔAEG

(2)若 AB = 4 ,求四边形 AGCD 的对角线 GD 的长.

来源:2017年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

菱形 ABCD 的对角线 AC BD 相交于点 O 0 ° < ABO 60 ° ,点 G 是射线 OD 上一个动点,过点 G GE / / DC 交射线 OC 于点 E ,以 OE OG 为邻边作矩形 EOGF

(1)如图1,当点 F 在线段 DC 上时,求证: DF = FC

(2)若延长 AD 与边 GF 交于点 H ,将 ΔGDH 沿直线 AD 翻折 180 ° 得到 ΔMDH

①如图2,当点 M EG 上时,求证:四边形 EOGF 为正方形;

②如图3,当 tan ABO 为定值 m 时,设 DG = k · DO k 为大于0的常数,当且仅当 k > 2 时,点 M 在矩形 EOGF 的外部,求 m 的值.

来源:2020年湖北省宜昌市中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,矩形中,,点是对角线的中点,过点的直线分别交边于点

(1)求证:四边形是平行四边形;

(2)当时,求的长.

来源:2019年湖北省鄂州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

图①,图②均为的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段,在图②中已画出线段,其中均为格点,按下列要求画图:

(1)在图①中,以为对角线画一个菱形,且为格点;

(2)在图②中,以为对角线画一个对边不相等的四边形,且为格点,

来源:2019年吉林省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

综合与实践

问题情境

在综合与实践课上,老师让同学们以"菱形纸片的剪拼"为主题开展数学活动,如图1,将一张菱形纸片 ABCD ( BAD > 90 ° ) 沿对角线 AC 剪开,得到 ΔABC ΔACD

操作发现

(1)将图1中的 ΔACD A 为旋转中心,按逆时针方向旋转角 α ,使 α = BAC ,得到如图2所示的△ AC ' D ,分别延长 BC DC ' 交于点 E ,则四边形 ACEC ' 的形状是    

(2)创新小组将图1中的 ΔACD A 为旋转中心,按逆时针方向旋转角 α ,使 α = 2 BAC ,得到如图3所示的△ AC ' D ,连接 DB C ' C ,得到四边形 BCC ' D ,发现它是矩形,请你证明这个结论;

实践探究

(3)缜密小组在创新小组发现结论的基础上,量得图3中 BC = 13 cm AC = 10 cm ,然后提出一个问题:将△ AC ' D 沿着射线 DB 方向平移 acm ,得到△ A ' C ' D ' ,连接 BD ' CC ' ,使四边形 BCC ' D 恰好为正方形,求 a 的值,请你解答此问题;

(4)请你参照以上操作,将图1中的 ΔACD 在同一平面内进行一次平移,得到△ A ' C ' D ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.

来源:2016年山西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

将一个直角三角形纸片放置在平面直角坐标系中,点,点,点是边上的一点(点不与点重合),沿着折叠该纸片,得点的对应点

(1)如图①,当点在第一象限,且满足时,求点的坐标;

(2)如图②,当中点时,求的长;

(3)当时,求点的坐标(直接写出结果即可).

来源:2017年天津市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,在中,是斜边的中点,以为直径作圆于点,延长,使,连接交圆于点

(1)判断四边形的形状,并说明理由;

(2)求证:

(3)若,求的长.

来源:2019年湖南省益阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AC BD 相交于点 O ,且 AO = CO ,点 E BD 上,满足 EAO = DCO

(1)求证:四边形 AECD 是平行四边形;

(2)若 AB = BC CD = 5 AC = 8 ,求四边形 AECD 的面积.

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AE BC AF CD ,垂足分别为 E F ,且 BE = DF

(1)求证: ABCD 是菱形;

(2)若 AB = 5 AC = 6 ,求 ABCD 的面积.

来源:2018年广西北海市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质解答题