如图, ΔABD 中, ∠ ABD = ∠ ADB .
(1)作点 A 关于 BD 的对称点 C ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接 BC , DC ,连接 AC ,交 BD 于点 O .
①求证:四边形 ABCD 是菱形;
②取 BC 的中点 E ,连接 OE ,若 OE = 13 2 , BD = 10 ,求点 E 到 AD 的距离.
(本题6分)已知:抛物线解析式为:y=x2-4x+3 求:(1)抛物线对称轴. (2)抛物线的顶点坐标.
(本题9分)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形,设格点多边形的面积为S,它各边上格点的个数和为x。(1)如上图所示中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式,答:S=_____。
(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2个格点。此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式S=____。(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?
(本题6分)我们把分子为1的分数叫做单位分数. 如,,,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=,=,=,(1)根据对上述式子的观察,你会发现=. 请写出□,○所表示的数;(2)思考,单位分数(n是不小于2的正整数)=,请写出△,☆所表示的式.(3)计算:
(本题7分)世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米.(1)若设展厅的正方形边长为x米,用含x的代数式表示核心筒的正方形边长为 米.(2)若设核心筒的正方形边长为y米,求该模型的平面图外框大正方形的周长及每个休息厅的图形周长.(用含y的代数式表示)(3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。
(本题5分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):
(1)产量最多的一天比产量最少的一天多生产 辆;(2)根据记录可知前三天共生产 辆;(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?