已知抛物线交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D. (1)求b、c的值并写出抛物线的对称轴;(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由.
如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上). (1)画出△ABC关于直线l的对称图形; (2)画出以P为顶点且与△ABC全等的格点三角形(规定:点P与点B对应).
如图,AC平分∠BAD,∠1=∠2,AB与AD相等吗?请说明理由.
如图,已知△ABC中,∠B="90" º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒. (1)出发2秒后,求PQ的长; (2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
如图, △ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC. (1)求∠ECD的度数; (2)若CE=12,求BC长.
如图,在⊿ABC中,∠B = 50º,∠C = 70º,AD是高,AE是角平分线, (1)∠BAC=__________,∠DAC=__________。(填度数) (2)求∠EAD的度数.