如图, ▱ ABCD 的对角线 AC , BD 交于点 E ,以 AB 为直径的 ⊙ O 经过点 E ,与 AD 交于点 F , G 是 AD 延长线上一点,连接 BG ,交 AC 于点 H ,且 ∠ DBG = 1 2 ∠ BAD .
(1)求证: BG 是 ⊙ O 的切线;
(2)若 CH = 3 , tan ∠ DBG = 1 2 ,求 ⊙ O 的直径.
某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图: 请根据以上统计图提供的信息,解答下列问题: (1)共抽取_____名学生进行问卷调查; (2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数; (3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.
解不等式组:.
解方程:.
如图,在平面直角坐标系中,抛物线经过A(﹣1,0),B(3,0),C(0,3)三点,其顶点为D.连接BD,点P是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果点P的坐标为(x,y),△PBE的面积为S,求S与x的函数关系式,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请求出点P′的坐标.
如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB. (1)求AC的长和点D的坐标; (2)说明△AEF与△DCE相似; (3)当△EFC为等腰三角形时,求点E的坐标.