菱形 ABCD 的对角线 AC , BD 相交于点 O , 0 ° < ∠ ABO ⩽ 60 ° ,点 G 是射线 OD 上一个动点,过点 G 作 GE / / DC 交射线 OC 于点 E ,以 OE , OG 为邻边作矩形 EOGF .
(1)如图1,当点 F 在线段 DC 上时,求证: DF = FC ;
(2)若延长 AD 与边 GF 交于点 H ,将 ΔGDH 沿直线 AD 翻折 180 ° 得到 ΔMDH .
①如图2,当点 M 在 EG 上时,求证:四边形 EOGF 为正方形;
②如图3,当 tan ∠ ABO 为定值 m 时,设 DG = k · DO , k 为大于0的常数,当且仅当 k > 2 时,点 M 在矩形 EOGF 的外部,求 m 的值.
如图所示,PA、PB是⊙O的两条切线,A、B为切点,连接PO,交⊙O于D,交AB于点C,根据以上条件请写出三个你认为正确的结论,并对其中一个结论给予证明;
已知关于x的一元二次方程x2 + 2(k-3)x + k2-9 = 0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
解下列方程:(1)(x﹣3)2=2(x﹣3)(2)x2-4x+1=0(用配方法);
已知,如图:四边形ABCD中,∠C>90°,CD⊥AD于D,CB⊥AB于B,AB=,tanA是关于x的方程的一个实数根。(1)求tanA;(2)若CD=m,求BC的值。
某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套。 (1)若设第二个月的销售定价每套增加x元,填写下表。
(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少元?