初中数学

如图,已知 ΔABC 的顶点坐标分别为 A ( 3 , 0 ) B ( 0 , 4 ) C ( 3 , 0 ) .动点 M N 同时从 A 点出发, M 沿 A C N 沿折线 A B C ,均以每秒1个单位长度的速度移动,当一个动点到达终点 C 时,另一个动点也随之停止移动,移动的时间记为 t 秒.连接 MN

(1)求直线 BC 的解析式;

(2)移动过程中,将 ΔAMN 沿直线 MN 翻折,点 A 恰好落在 BC 边上点 D 处,求此时 t 值及点 D 的坐标;

(3)当点 M N 移动时,记 ΔABC 在直线 MN 右侧部分的面积为 S ,求 S 关于时间 t 的函数关系式.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, BAC = 90 ° E BC 的中点, AD / / BC AE / / DC EF CD 于点 F

(1)求证:四边形 AECD 是菱形;

(2)若 AB = 6 BC = 10 ,求 EF 的长.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AD / / BC BA = BC BD 平分 ABC

(1)求证:四边形 ABCD 是菱形;

(2)过点 D DE BD ,交 BC 的延长线于点 E ,若 BC = 5 BD = 8 ,求四边形 ABED 的周长.

来源:2018年辽宁省本溪市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图①,在 Rt Δ ABC 中, C = 90 ° AC = 3 BC = 4 .求作菱形 DEFG ,使点 D 在边 AC 上,点 E F 在边 AB 上,点 G 在边 BC 上.

小明的作法

1.如图②,在边 AC 上取一点 D ,过点 D DG / / AB BC 于点 G

2.以点 D 为圆心, DG 长为半径画弧,交 AB 于点 E

3.在 EB 上截取 EF = ED ,连接 FG ,则四边形 DEFG 为所求作的菱形.

(1)证明小明所作的四边形 DEFG 是菱形.

(2)小明进一步探索,发现可作出的菱形的个数随着点 D 的位置变化而变化 请你继续探索,直接写出菱形的个数及对应的 CD 的长的取值范围.

来源:2019年江苏省南京市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC 的角平分线交 BC 于点 D DE / / AB DF / / AC

(1)试判断四边形 AFDE 的形状,并说明理由;

(2)若 BAC = 90 ° ,且 AD = 2 2 ,求四边形 AFDE 的面积.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AE BC AF CD ,垂足分别为 E F ,且 BE = DF

(1)求证: ABCD 是菱形;

(2)若 AB = 5 AC = 6 ,求 ABCD 的面积.

来源:2018年广西北海市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 3 BC = 4 D E 分别是斜边 AB 、直角边 BC 上的点,把 ΔABC 沿着直线 DE 折叠.

(1)如图1,当折叠后点 B 和点 A 重合时,用直尺和圆规作出直线 DE ;(不写作法和证明,保留作图痕迹)

(2)如图2,当折叠后点 B 落在 AC 边上点 P 处,且四边形 PEBD 是菱形时,求折痕 DE 的长.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E F 分别是 AB BC 的中点, CE AB ,垂足为 E AF BC ,垂足为 F AF CE 相交于点 G

(1)证明: ΔCFG ΔAEG

(2)若 AB = 4 ,求四边形 AGCD 的对角线 GD 的长.

来源:2017年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BC = 2 AB = 4 ,点 E F 分别是 BC AD 的中点.

(1)求证: ΔABE ΔCDF

(2)当四边形 AECF 为菱形时,求出该菱形的面积.

来源:2016年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, PA PB O 的切线, A B 为切点, APB = 60 ° ,连接 PO 并延长与 O 交于 C 点,连接 AC BC

(1)求证:四边形 ACBP 是菱形;

(2)若 O 半径为1,求菱形 ACBP 的面积.

来源:2017年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,以点 A 为圆心, AB 长为半径画弧交 AD 于点 F ,再分别以点 B F 为圆心,大于 1 2 BF 的相同长为半径画弧,两弧交于点 P ;连接 AP 并延长交 BC 于点 E ,连接 EF ,则所得四边形 ABEF 是菱形.

(1)根据以上尺规作图的过程,求证:四边形 ABEF 是菱形;

(2)若菱形 ABEF 的周长为16, AE = 4 3 ,求 C 的大小.

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AC BD 相交于点 O ,且 AO = CO ,点 E BD 上,满足 EAO = DCO

(1)求证:四边形 AECD 是平行四边形;

(2)若 AB = BC CD = 5 AC = 8 ,求四边形 AECD 的面积.

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质解答题