如图①,在 Rt Δ ABC 中, ∠ C = 90 ° , AC = 3 , BC = 4 .求作菱形 DEFG ,使点 D 在边 AC 上,点 E 、 F 在边 AB 上,点 G 在边 BC 上.
小明的作法
1.如图②,在边 AC 上取一点 D ,过点 D 作 DG / / AB 交 BC 于点 G .
2.以点 D 为圆心, DG 长为半径画弧,交 AB 于点 E .
3.在 EB 上截取 EF = ED ,连接 FG ,则四边形 DEFG 为所求作的菱形.
(1)证明小明所作的四边形 DEFG 是菱形.
(2)小明进一步探索,发现可作出的菱形的个数随着点 D 的位置变化而变化 … … 请你继续探索,直接写出菱形的个数及对应的 CD 的长的取值范围.
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).(1)若小静转动转盘一次,求得到负数的概率;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.
某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50 米至D处,测得最高点A的仰角为60°.则该兴趣小组测得的摩天轮的高度AB约是多少米?(结果精确到1米)(参考数据:,)
如图,四边形ABCD中,AD∥BC,AF=CE,BE⊥AC于E,DF⊥AC于F.试判断DC与AB的位置关系,并说明理由.
先化简,再求值:,其中.
点P是△ABD中AD边上一点,如图1,当P为AD中点时,则有S△ABP= S△ABD;如图2,在四边形ABCD中,P是AD边上任意一点,△PBC的面积为,△ABC的面积为,△DBC的面积为。①当AP=AD时,如图3,试探究、、之间的关系?写出求解过程;②一般地,当AP=AD(n表示正整数)时,试探究、、之间的关系?写出求解过程。