如图,射线 和射线 相交于点 , ,且 .点 是射线 上的动点(点 不与点 和点 重合),作射线 ,并在射线 上取一点 ,使 ,连接 , .
(1)如图①,当点 在线段 上, 时,请直接写出 的度数;
(2)如图②,当点 在线段 上, 时,请写出线段 , , 之间的数量关系,并说明理由;
(3)当 , 时,请直接写出 的值.
如图,四边形 是边长为1的正方形,点 在 边上运动,且不与点 和点 重合,连接 ,过点 作 交 的延长线于点 , 交 于点 .
(1)求证: ;
(2)当 时,求 的长;
(3)连接 ,在点 运动过程中,四边形 能否为平行四边形?若能,求出此时 的长;若不能,说明理由.
如图,在 中, , 分别是 和 的中点,连接 ,点 是 的中点,连接 并延长,交 的延长线于点 .若 ,则 的长为 .
在 中, , ,点 在边 上, 且 , 交边 于点 ,连接 .
(1)特例发现:如图1,当 时,
①求证: ;
②推断: ;
(2)探究证明:如图2,当 时,请探究 的度数是否为定值,并说明理由;
(3)拓展运用:如图3,在(2)的条件下,当 时,过点 作 的垂线,交 于点 ,交 于点 ,若 ,求 的长.
如图,已知点 , , , 在一条直线上, , , .
(1)求证: ;
(2)若 , ,求 的长.
正方形 的边长为 ,点 、 分别是线段 、 上的动点,连接 并延长,交边 于 ,过 作 ,垂足为 ,交边 于点 .
(1)如图1,若点 与点 重合,求证: ;
(2)如图2,若点 从点 出发,以 的速度沿 向点 运动,同时点 从点 出发,以 的速度沿 向点 运动,运动时间为 .
①设 ,求 关于 的函数表达式;
②当 时,连接 ,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
如图放置的两个正方形,大正方形 边长为 ,小正方形 边长为 , 在 边上,且 ,连接 , , 交 于点 ,将 绕点 旋转至 ,将 绕点 旋转至 ,给出以下五个结论:① ;② ;③ ;④ ;⑤ , , , 四点共圆,其中正确的个数是
A.2B.3C.4D.5
如图,已知等边,于,,为线段上一点,且,连接,,于,连接.
(1)求证:;
(2)试说明与的位置关系和数量关系.
如图,已知是的直径,,为圆上一点,且,连接,,,与交于点.
(1)求证:为的切线;
(2)若,求的值.
如图,在中,,,,点为的中点,以点为圆心作圆心角为的扇形,点恰在弧上,则图中阴影部分的面积为 .
如图,四边形是边长为2的正方形,点是边上一动点(不与点,重合),,且交正方形外角的平分线于点,交于点,连接,有下列结论:
①;
②;
③;
④的面积的最大值为1.
其中正确结论的序号是 .(把正确结论的序号都填上)