如图所示,的顶点在反比例函数的图象上,直线交轴于点,且点的纵坐标为5,过点、分别作轴的垂线、,垂足分别为点、,且.
(1)若点为线段的中点,求的值;
(2)若为等腰直角三角形,,其面积小于3.
①求证:;
②把称为,,,两点间的“距离”,记为,求,,的值.
如图,在 中, 为直径,点 为圆上一点,延长 到点 ,使 ,且 .
(1)求证: 是 的切线.
(2)分别过 、 两点作直线 的垂线,垂足分别为 、 两点,过 点作 的垂线,垂足为点 .求证: .
在平面直角坐标系中,已知 为等腰直角三角形, ,点 ,点 在 轴正半轴上,点 在第三象限,且在反比例函数 的图象上,则
A.3B.4C.6D.12
如图,在菱形 中, , 是锐角, 于点 , 是 的中点,连接 , .若 ,则 的值为 .
问题背景:如图1,在四边形 中, , , , , , 绕 点旋转,它的两边分别交 、 于 、 .探究图中线段 , , 之间的数量关系.
小李同学探究此问题的方法是:延长 到 ,使 ,连接 ,先证明 ,再证明 ,可得出结论,他的结论就是 ;
探究延伸1:如图2,在四边形 中, , , , , 绕 点旋转.它的两边分别交 、 于 、 ,上述结论是否仍然成立?请直接写出结论(直接写出"成立"或者"不成立" ,不要说明理由;
探究延伸2:如图3,在四边形 中, , , , 绕 点旋转.它的两边分别交 、 于 、 .上述结论是否仍然成立?并说明理由;
实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心 处)北偏西 的 处.舰艇乙在指挥中心南偏东 的 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里 小时的速度前进,同时舰艇乙沿北偏东 的方向以100海里 小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达 、 处.且指挥中心观测两舰艇视线之间的夹角为 .试求此时两舰艇之间的距离.
如图,四边形中,对角线与交于点,且.
(1)求证:四边形是正方形;
(2)若是边上一点与,不重合),连接,将线段绕点顺时针旋转,得到线段,过点分别作及延长线的垂线,垂足分别为,.设四边形的面积为,以,为邻边的矩形的面积为,且.当时,求的长.
正方形 的边长为 ,点 、 分别是线段 、 上的动点,连接 并延长,交边 于 ,过 作 ,垂足为 ,交边 于点 .
(1)如图1,若点 与点 重合,求证: ;
(2)如图2,若点 从点 出发,以 的速度沿 向点 运动,同时点 从点 出发,以 的速度沿 向点 运动,运动时间为 .
①设 ,求 关于 的函数表达式;
②当 时,连接 ,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
如图放置的两个正方形,大正方形 边长为 ,小正方形 边长为 , 在 边上,且 ,连接 , , 交 于点 ,将 绕点 旋转至 ,将 绕点 旋转至 ,给出以下五个结论:① ;② ;③ ;④ ;⑤ , , , 四点共圆,其中正确的个数是
A.2B.3C.4D.5
如图,在正方形 的对角线 上取一点 .使得 ,连接 并延长 到 ,使 , 与 相交于点 ,若 ,有下列结论:① ;② ;③ ;④ .则其中正确的结论有
A. |
①②③ |
B. |
①②③④ |
C. |
①②④ |
D. |
①③④ |
如图,是的直径,点在的延长线上,、是上的两点,,,延长交的延长线于点.
(1)求证:是的切线;
(2)求证:;
(3)若,,求弦的长.
如图,点,,,在一条直线上,,,.
(1)求证:;
(2)连接,求证:四边形是平行四边形.