正方形 ABCD 的边长为 6 cm ,点 E 、 M 分别是线段 BD 、 AD 上的动点,连接 AE 并延长,交边 BC 于 F ,过 M 作 MN ⊥ AF ,垂足为 H ,交边 AB 于点 N .
(1)如图1,若点 M 与点 D 重合,求证: AF = MN ;
(2)如图2,若点 M 从点 D 出发,以 1 cm / s 的速度沿 DA 向点 A 运动,同时点 E 从点 B 出发,以 2 cm / s 的速度沿 BD 向点 D 运动,运动时间为 ts .
①设 BF = ycm ,求 y 关于 t 的函数表达式;
②当 BN = 2 AN 时,连接 FN ,求 FN 的长.
如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度的取值范围。(罐壁的厚度和小圆孔的大小忽略不计)
先化简,再求值:,其中。
)解方程:(1);(2)
计算:
如图:点C在线段BD上,AB∥ED,∠A=∠1,∠E=∠2. (1)若∠B=40°,求∠1、∠2的度数; (2)判断AC与CE的位置关系,并说明理由.