正方形 ABCD 的边长为 6 cm ,点 E 、 M 分别是线段 BD 、 AD 上的动点,连接 AE 并延长,交边 BC 于 F ,过 M 作 MN ⊥ AF ,垂足为 H ,交边 AB 于点 N .
(1)如图1,若点 M 与点 D 重合,求证: AF = MN ;
(2)如图2,若点 M 从点 D 出发,以 1 cm / s 的速度沿 DA 向点 A 运动,同时点 E 从点 B 出发,以 2 cm / s 的速度沿 BD 向点 D 运动,运动时间为 ts .
①设 BF = ycm ,求 y 关于 t 的函数表达式;
②当 BN = 2 AN 时,连接 FN ,求 FN 的长.
如图,A、B两点的坐标分别是A、B.(1)求△OAB的面积;(2)若过A、B两点的直线解析式为,求的值.(本小题结果保留小数点后一位)
(本题满分16分,每小题8分)(1) 计算: (2) 先计算,再把计算所得的多项式分解因式:
(12分)如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.,B(-3,O),C(,O).(1)求⊙M的半径; .(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.
(10分)如图,等边三角形ABC和等边三角形DEC,CE和AC重合,CE=AB,(1)求证:AD=BE;(2)若CE绕点C顺时针旋转30度,连BD交AC于点G,取AB的中点F连FG,求证:BE=2FG;(3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)
(10分)端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或列表方法求选购方案);(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表所示),发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1200元,请问购买了甲厂家的高档粽子多少盒?