如图,射线 AB 和射线 CB 相交于点 B , ∠ ABC = α ( 0 ° < α < 180 ° ) ,且 AB = CB .点 D 是射线 CB 上的动点(点 D 不与点 C 和点 B 重合),作射线 AD ,并在射线 AD 上取一点 E ,使 ∠ AEC = α ,连接 CE , BE .
(1)如图①,当点 D 在线段 CB 上, α = 90 ° 时,请直接写出 ∠ AEB 的度数;
(2)如图②,当点 D 在线段 CB 上, α = 120 ° 时,请写出线段 AE , BE , CE 之间的数量关系,并说明理由;
(3)当 α = 120 ° , tan ∠ DAB = 1 3 时,请直接写出 CE BE 的值.
某种商品,按标价销售每件可盈利50元,平均每天销售24件,根据市场信息,若每件降价2元,则每天可多销售6件,如果经销商想保证每天盈利2160元,同时考虑不过多增加营业员的工作量,即每天销售不超过100件,每件商品应降价多少元?
解方程5x(x+3)=2(x+3)
如图①,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE。(不需要证明)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF。则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由。如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种?并写出证明过程。
如图,已知AB∥CD,∠ACB=90°,E为AB的中点,CE=CD,DE与AC相交于F点.则DE、AC有怎样的关系?说明你的理由.
某城市出租汽车收费标准为:4km以内(含4km)收费10元;超出4km的部分,每千米收费1.4元.写出车费y元与行驶路程x千米之间的函数关系式(x≥4)某人乘出租汽车行驶了5km,应付多少车费?若某人付了17元车费,那么出租车行驶了多远