如图,在 中, , 分别是 和 的中点,连接 ,点 是 的中点,连接 并延长,交 的延长线于点 .若 ,则 的长为 .
已知是等腰三角形,.
(1)特殊情形:如图1,当时,有 .(填“”,“ ”或“”
(2)发现探究:若将图1中的绕点顺时针旋转到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,是等腰直角三角形内一点,,且,,,求的度数.
如图, 是 的直径, ,点 为线段 上一点(不与 , 重合),作 ,交 于点 ,垂足为点 ,作直径 ,过点 的切线交 的延长线于点 , 于点 ,连接 .
(1)求证: 是 的平分线;
(2)求证: ;
(3)当 时,求劣弧 的长度(结果保留
如图,在平行四边形 中, 是 的中点,则下列四个结论:
① ;
②若 , ,则 ;
③若 ,则 ;
④若 ,则 与 全等.
其中正确结论的个数为
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图, 已知正方形 ,点 是 边的中点, 与 相交于点 ,连接 ,下列结论:① ;② ;③ ;④ ,其中正确的是
A. |
A .①③B .②③C .①④D .②④ |
正方形 的边长为 ,点 、 分别是线段 、 上的动点,连接 并延长,交边 于 ,过 作 ,垂足为 ,交边 于点 .
(1)如图1,若点 与点 重合,求证: ;
(2)如图2,若点 从点 出发,以 的速度沿 向点 运动,同时点 从点 出发,以 的速度沿 向点 运动,运动时间为 .
①设 ,求 关于 的函数表达式;
②当 时,连接 ,求 的长.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
如图放置的两个正方形,大正方形 边长为 ,小正方形 边长为 , 在 边上,且 ,连接 , , 交 于点 ,将 绕点 旋转至 ,将 绕点 旋转至 ,给出以下五个结论:① ;② ;③ ;④ ;⑤ , , , 四点共圆,其中正确的个数是
A.2B.3C.4D.5
(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.
①求证:;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接,当时,若,,求的长.
如图,正方形 中,点 、 分别在边 , 上, 与 交于点 .若 , ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在中,点、分别在、上,与相交于点,且.
(1)求证:;
(2)连接、,则四边形 (填“是”或“不是” 平行四边形.
如图, 、 两点的坐标分别为 , ,将线段 绕点 逆时针旋转 得到线段 ,过点 作 ,垂足为 ,反比例函数 的图象经过点 .
(1)直接写出点 的坐标,并求反比例函数的解析式;
(2)点 在反比例函数 的图象上,当 的面积为3时,求点 的坐标.