如图, A 、 B 两点的坐标分别为 ( - 2 , 0 ) , ( 0 , 3 ) ,将线段 AB 绕点 B 逆时针旋转 90 ° 得到线段 BC ,过点 C 作 CD ⊥ OB ,垂足为 D ,反比例函数 y = k x 的图象经过点 C .
(1)直接写出点 C 的坐标,并求反比例函数的解析式;
(2)点 P 在反比例函数 y = k x 的图象上,当 ΔPCD 的面积为3时,求点 P 的坐标.
如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(1,﹣2).直线OM是一次函数y=x的图像.让⊙A沿y轴正方向以每秒1个单位长度移动,移动时间为t.(1)填空①直线OM与x轴所夹的锐角度数为 °;②当t= 时,⊙A与坐标轴有两个公共点;(2)当t>3时,求出运动过程中⊙A与直线OM相切时的t的值;(3)运动过程中,当⊙A与直线OM相交所得的弦长为1时,求t的值.
如图,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上1、2、3、4四个数字;转盘B被均匀分成6等份,每份标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.
如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=-x+5.(1)点D的坐标和BC的长;(2)求点C的坐标和⊙M的半径;(3)求证:CD是⊙M的切线.
如图,已知半圆O的直径AB,将—个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连结AD、BC交于点E.线段BD是否恒等于DE,若是请证明,若不是请说明理由.
一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数.(2)求从袋中摸出一个球是白球的概率.(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.