甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过2000元的电器,超出的金额按80℅收取;乙商场规定:凡超过1500元的电器,超出的金额按90℅收取.某顾客购买的电器价格是元.(1)当=1600时,该顾客应选择在 商场购买比较合算;(2)当>2000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当=3000时,该顾客应选择哪一家商场购买比较合算?说明理由.
如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3. (1)求DE的长; (2)求△ADB的面积.
如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C与欲到达地点B偏离50米,结果他在水中实际游的路程比河的宽度多10米,求:该河的宽度AB为多少米?
(1)如图中图(1),已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD.请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹) (2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD.BE与CD有什么数量关系?简单说明理由. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图(3),要测量池塘两岸相对的两点B,E间的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
已知a、b、c满足. (1)求a、b、c的值; (2)试问以a、b、c为边长能否构成三角形?若能构成,求出三角形周长;若不能构成三角形,请说明理由.
阅读材料: 小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索: 设(其中a、b、m、n均为正整数),则有, ∴a=m2+2n2,b=2mn. 这样小明就找到了一种把类似的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得a=________,b=________; (2)利用所探索的结论,找一组正整数a、b、m、n填空:; (3)若,且a、m、n均为正整数,求a的值.