如图,在⊿ABC中,AB=BC,点D在AB的延长线上。(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)①作∠CBD的平分线BM ②作边BC上的中线AE,并延长AE交BM于点F.(2)在(1)的基础上,连接CF,判断四边形ABFC的形状,并说明理由。
某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此太阳光线与地面成30°夹角. (1)求出树高AB; (2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.
计算:(1) 化简:(2)(a2-1)÷(1-) (3) 解关于x的方程:21世纪教育(4)解不等式组:
如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°。 (1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数; (2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与射线OC平行;在第秒时,直线ON恰好平分锐角∠AOC。(直接写出结果); (3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
操作与实践 (1)如图1,已知△ABC,过点A画一条平分三角形面积的直线; (2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO的面积相等; (3)如图3,点M在△ABC的边上, 过点M画一条平分三角形面积的直线.
已知a+b=3,ab=2,求a2b+ab2,a2+b2的值。