如图,在⊿ABC中,AB=BC,点D在AB的延长线上。(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)①作∠CBD的平分线BM ②作边BC上的中线AE,并延长AE交BM于点F.(2)在(1)的基础上,连接CF,判断四边形ABFC的形状,并说明理由。
如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.
如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.
如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x(s)之间的关系式为y=x2+x(0≤x≤10).发射3 s后,导弹到达A点,此时位于与L同一水面的R处雷达站测得AR的距离是2 km,再过3 s后,导弹到达B点.(1)求发射点L与雷达站R之间的距离;(2)当导弹到达B点时,求雷达站测得的仰角(即∠BRL)的正切值.
如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式.
如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.