初中数学

如图,已知 AB O 的直径, AD BD O 的弦, BC O 的切线,切点为 B OC / / AD BA CD 的延长线相交于点 E

(1)求证: DC O 的切线;

(2)若 AE = 1 ED = 3 ,求 O 的半径.

来源:2017年四川省凉山州中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BC = 2 AB = 4 ,点 E F 分别是 BC AD 的中点.

(1)求证: ΔABE ΔCDF

(2)当四边形 AECF 为菱形时,求出该菱形的面积.

来源:2016年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,过点 C CD / / AB E AC 的中点,连接 DE 并延长,交 AB 于点 F ,交 CB 的延长线于点 G ,连接 AD CF

(1)求证:四边形 AFCD 是平行四边形.

(2)若 GB = 3 BC = 6 BF = 3 2 ,求 AB 的长.

来源:2018年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-04-25
  • 题型:未知
  • 难度:未知

已知线段 AB 直线 l 于点 B ,点 D 在直线 l 上,分别以 AB AD 为边作等边三角形 ABC 和等边三角形 ADE ,直线 CE 交直线 l 于点 F

(1)当点 F 在线段 BD 上时,如图①,求证: DF = CE CF

(2)当点 F 在线段 BD 的延长线上时,如图②;当点 F 在线段 DB 的延长线上时,如图③,请分别写出线段 DF CE CF 之间的数量关系,在图②、图③中选一个进行证明;

(3)在(1)、(2)的条件下,若 BD = 2 BF EF = 6 ,则 CF =   

来源:2017年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中, B + D = 180 ° ,对角线 AC 平分 BAD

(1)如图1,若 DAB = 120 ° ,且 B = 90 ° ,试探究边 AD AB 与对角线 AC 的数量关系并说明理由.

(2)如图2,若将(1)中的条件“ B = 90 ° ”去掉,(1)中的结论是否成立?请说明理由.

(3)如图3,若 DAB = 90 ° ,探究边 AD AB 与对角线 AC 的数量关系并说明理由.

来源:2017年四川省乐山市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知 ΔABC 的内切圆 O AB BC AC 分别相切于点 D E F ,若 EF ̂ = DE ̂ ,如图1.

(1)判断 ΔABC 的形状,并证明你的结论;

(2)设 AE DF 相交于点 M ,如图2, AF = 2 FC = 4 ,求 AM 的长.

来源:2017年广西百色市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, AC BAE 的平分线,点 D 是线段 AC 上的一点, C = E AB = AD .求证: BC = DE

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC AD BC 于点 D BE AC 于点 E AD BE 交于点 F BH AB 于点 B ,点 M BC 的中点,连接 FM 并延长交 BH 于点 H

(1)如图①所示,若 ABC = 30 ° ,求证: DF + BH = 3 3 BD

(2)如图②所示,若 ABC = 45 ° ,如图③所示,若 ABC = 60 ° (点 M 与点 D 重合),猜想线段 DF BH BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, BD 是正方形 ABCD 的对角线,线段 BC 在其所在的直线上平移,将平移得到的线段记为 PQ ,连接 PA ,过点 Q QO BD ,垂足为 O ,连接 OA OP

(1)如图①所示,求证: AP = 2 OA

(2)如图②所示, PQ BC 的延长线上,如图③所示, PQ BC 的反向延长线上,猜想线段 AP OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△ACD′的位置,若平移开始后点D′未到达点B时,AC′交CDEDC′交CB于点F,连接EF,当四边形EDDF为菱形时,试探究△ADE的形状,并判断△ADE与△EFC′是否全等?请说明理由.

来源:2016年湖北省荆州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图, AB CD ECD上一点,BEAD于点F EF BF .求证: AF DF

来源:2016年湖北省十堰市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形, CE AB AB 的延长线于点 E CF AD AD 的延长线于点 F ,求证: DF = BE

来源:2016年四川省广安市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O ,点 E F BD 上, BE = DF

(1)求证: AE = CF

(2)若 AB = 6 COD = 60 ° ,求矩形 ABCD 的面积.

来源:2017年广西北海市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,点 D 是等边三角形 ABC 外接圆的 BC ̂ 上一点(与点 B C 不重合), BE / / DC AD 于点 E

(1)求证: ΔBDE 是等边三角形;

(2)求证: ΔABE ΔCBD

(3)如果 BD = 2 CD = 1 ,求 ΔABC 的边长.

来源:2017年广西来宾市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题