在四边形 ABCD 中, ∠ B + ∠ D = 180 ° ,对角线 AC 平分 ∠ BAD .
(1)如图1,若 ∠ DAB = 120 ° ,且 ∠ B = 90 ° ,试探究边 AD 、 AB 与对角线 AC 的数量关系并说明理由.
(2)如图2,若将(1)中的条件“ ∠ B = 90 ° ”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若 ∠ DAB = 90 ° ,探究边 AD 、 AB 与对角线 AC 的数量关系并说明理由.
阅读以下材料,并解答以下问题. “完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=" m" + n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法, 这就是分步乘法计数原理. ”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走), 会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出. (1)根据以上原理和图2的提示, 算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种? (2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种? (3) 现由于交叉点C道路施工,禁止通行. 求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?
一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大. (1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径; (2)若L=160m,r=10m,求使图2面积为最大时的θ值.
如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0). (1) 请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧); (2)求线段BC的对应线段所在直线的解析式.
已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长.
如图,在△ABC中,AD是BC上的高,, (1) 求证:AC=BD; (2)若,BC=12,求AD的长.