如图,在 ΔABC 中, AB = BC , AD ⊥ BC 于点 D , BE ⊥ AC 于点 E , AD 与 BE 交于点 F , BH ⊥ AB 于点 B ,点 M 是 BC 的中点,连接 FM 并延长交 BH 于点 H .
(1)如图①所示,若 ∠ ABC = 30 ° ,求证: DF + BH = 3 3 BD ;
(2)如图②所示,若 ∠ ABC = 45 ° ,如图③所示,若 ∠ ABC = 60 ° (点 M 与点 D 重合),猜想线段 DF 、 BH 与 BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
一人自地平面上测得塔顶的仰角为60°,于原地登高50米后,又测得塔顶的仰角为30°,求塔高和此人在地面时到塔底的距离.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点 (1)求证:AC2=AB•AD; (2)求证:CE∥AD; (3)若AD=4,AB=6,求的值.
如图是一个几何体的三视图. (1)写出这个几何体的名称; (2)根据所示数据计算这个几何体的侧面积;
已知一次函数(m为常数)的图象与反比例函数 (k为常数,)的图象相交于点 A(1,3). (1)求这两个函数的解析式及其图象的另一交点的坐标; (2)观察图象,写出使函数值的自变量的取值范围;
在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长。