铜仁市某中学在一次健康知识测试中,抽取部分学生成绩(分数为整数,满分100分)为样本,绘制成绩统计图,如图所示,请结合统计图回答下列问题: (1)本次测试中抽样的学生有多少人?(2)分数在90.5~100.5这一组的人数是多少?(3)估计这次考试出现次数最多的那个分数落在哪一组内?
计算:
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y. (1)求证:△DHQ∽△ABC; (2)求y关于x的函数解析式并求y的最大值;
在△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转. (1) 当点B在第一象限,纵坐标是时,求点B的横坐标; (2) 如果抛物线(a≠0)的对称轴经过点C,请你探究: 当,,时,A,B两点是否都在这条抛物线上?并说明理由
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED="4." (1)求证: ~; (2) 求的值; (3)延长BC至F,连接FD,使的面积等于,求的度数.
(1)操作发现 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩行ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由. (2)问题解决保持(1)中的条件不变,若DC=2DF,求的值; (3)类比探求保持(1)中条件不变,若DC=nDF,求的值