初中数学

如图1,在正方形 ABCD 中,点 E AB 边上的一个动点(点 E 与点 A B 不重合),连接 CE ,过点 B BF CE 于点 G ,交 AD 于点 F

(1)求证: ΔABF ΔBCE

(2)如图2,当点 E 运动到 AB 中点时,连接 DG ,求证: DC = DG

(3)如图3,在(2)的条件下,过点 C CM DG 于点 H ,分别交 AD BF 于点 M N ,求 MN NH 的值.

来源:2019年广西南宁市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,过 B 点作 BM AC 于点 E ,交 CD 于点 M ,过 D 点作 DN AC 于点 F ,交 AB 于点 N

(1)求证:四边形 BMDN 是平行四边形;

(2)已知 AF = 12 EM = 5 ,求 AN 的长.

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E DC 边的中点,连接 AE ,若 AE 的延长线和 BC 的延长线相交于点 F

(1)求证: BC = CF

(2)连接 AC BE 相交于点为 G ,若 ΔGEC 的面积为2,求平行四边形 ABCD 的面积.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图所示,直线 DP 和圆 O 相切于点 C ,交直径 AE 的延长线于点 P .过点 C AE 的垂线,交 AE 于点 F ,交圆 O 于点 B .作平行四边形 ABCD ,连接 BE DO CO

(1)求证: DA = DC

(2)求 P AEB 的大小.

来源:2017年湖南省邵阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 中, AB = AC ,把 ΔABC A 点沿顺时针方向旋转得到 ΔADE ,连接 BD CE 交于点 F

(1)求证: ΔAEC ΔADB

(2)若 AB = 2 BAC = 45 ° ,当四边形 ADFC 是菱形时,求 BF 的长.

来源:2016年贵州省毕节地区中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, AC BAE 的平分线,点 D 是线段 AC 上的一点, C = E AB = AD .求证: BC = DE

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC AD BC 于点 D BE AC 于点 E AD BE 交于点 F BH AB 于点 B ,点 M BC 的中点,连接 FM 并延长交 BH 于点 H

(1)如图①所示,若 ABC = 30 ° ,求证: DF + BH = 3 3 BD

(2)如图②所示,若 ABC = 45 ° ,如图③所示,若 ABC = 60 ° (点 M 与点 D 重合),猜想线段 DF BH BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, BD 是正方形 ABCD 的对角线,线段 BC 在其所在的直线上平移,将平移得到的线段记为 PQ ,连接 PA ,过点 Q QO BD ,垂足为 O ,连接 OA OP

(1)如图①所示,求证: AP = 2 OA

(2)如图②所示, PQ BC 的延长线上,如图③所示, PQ BC 的反向延长线上,猜想线段 AP OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知四边形ABCD中, AB AD AB AD ,连接AC,过点A AE AC ,且使 AE AC ,连接BE,过A AH CD HBEF

(1)如图1,当ECD的延长线上时,求证: ABC ADE ②BF EF

(2)如图2,当E不在CD的延长线上时,BFEF还成立吗?请证明你的结论.

来源:2016年湖南省常德市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,点ACDB四点共线,且 AC BD A B ADE BCF ,求证: DE CF

来源:2016年湖南省衡阳市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知: AOB

求作: A ' O ' B ' ,使得 A ' O ' B ' = AOB

作法:

①以 O 为圆心,任意长为半径画弧,分别交 OA OB 于点 C D

②画一条射线 O ' A ' ,以点 O ' 为圆心, OC 长为半径画弧,交 O ' A ' 于点 C '

③以点 C ' 为圆心, CD 长为半径画弧,与第②步中所画的弧相交于点 D '

④过点 D ' 画射线 O ' B ' ,则 A ' O ' B ' = AOB

根据上面的作法,完成以下问题:

(1)使用直尺和圆规,作出 A ' O ' B ' (请保留作图痕迹).

(2)完成下面证明 A ' O ' B ' = AOB 的过程(注 : 括号里填写推理的依据).

证明:由作法可知 O ' C ' = OC O ' D ' = OD D ' C ' =   

C ' O ' D ' ΔCOD (    )

A ' O ' B ' = AOB (    )

来源:2019年广西柳州市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

(1)阅读理解:如图①,在四边形 ABCD 中, AB / / DC E BC 的中点,若 AE BAD 的平分线,试判断 AB AD DC 之间的等量关系.

解决此问题可以用如下方法:延长 AE DC 的延长线于点 F ,易证 ΔAEB ΔFEC ,得到 AB = FC ,从而把 AB AD DC 转化在一个三角形中即可判断.

AB AD DC 之间的等量关系为  

(2)问题探究:如图②,在四边形 ABCD 中, AB / / DC AF DC 的延长线交于点 F E BC 的中点,若 AE BAF 的平分线,试探究 AB AF CF 之间的等量关系,并证明你的结论.

(3)问题解决:如图③, AB / / CF AE BC 交于点 E BE : EC = 2 : 3 ,点 D 在线段 AE 上,且 EDF = BAE ,试判断 AB DF CF 之间的数量关系,并证明你的结论.

来源:2017年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, P 是对角线 BD 上的一点,过点 C CQ / / DB ,且 CQ = DP ,连接 AP BQ PQ

(1)求证: ΔAPD ΔBQC

(2)若 ABP + BQC = 180 ° ,求证:四边形 ABQP 为菱形.

来源:2018年贵州省毕节市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题