已知: ∠ AOB .
求作: ∠ A ' O ' B ' ,使得 ∠ A ' O ' B ' = ∠ AOB .
作法:
①以 O 为圆心,任意长为半径画弧,分别交 OA , OB 于点 C , D ;
②画一条射线 O ' A ' ,以点 O ' 为圆心, OC 长为半径画弧,交 O ' A ' 于点 C ' ;
③以点 C ' 为圆心, CD 长为半径画弧,与第②步中所画的弧相交于点 D ' ;
④过点 D ' 画射线 O ' B ' ,则 ∠ A ' O ' B ' = ∠ AOB .
根据上面的作法,完成以下问题:
(1)使用直尺和圆规,作出 ∠ A ' O ' B ' (请保留作图痕迹).
(2)完成下面证明 ∠ A ' O ' B ' = ∠ AOB 的过程(注 : 括号里填写推理的依据).
证明:由作法可知 O ' C ' = OC , O ' D ' = OD , D ' C ' = ,
∴ △ C ' O ' D ' ≅ ΔCOD ( )
∴ ∠ A ' O ' B ' = ∠ AOB . ( )
如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE. (1)求证:DE⊥AG; (2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数; ②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米). (1)①当t=2分钟时,速度v=米/分钟,路程s=米; ②当t=15分钟时,速度v=米/分钟,路程s=米. (2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式; (3)求王叔叔该天上班从家出发行进了750米时所用的时间t.
如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长.
某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:
请根据以上信息回答下列问题: (1)分别求出统计表中的x、y的值; (2)估计该校九年级400名学生中为“优秀”档次的人数; (3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.
(本小题满分9分)为提高饮水质量,越来越多的居民开始选购家用净水器,一商场抓住商机,从厂家购进A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元, (1)求A、B两种型号家用净水器各购进多少台? (2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)