如图,在平行四边形 ABCD 中, P 是对角线 BD 上的一点,过点 C 作 CQ / / DB ,且 CQ = DP ,连接 AP 、 BQ 、 PQ .
(1)求证: ΔAPD ≅ ΔBQC ;
(2)若 ∠ ABP + ∠ BQC = 180 ° ,求证:四边形 ABQP 为菱形.
如图,在四边形ABCD中,AD=4cm,CD=3cm,AD⊥CD,AB=13cm,BC=12cm,求四边形的面积.
请根据我国古代数学家赵爽的弦图(如图),说明勾股定理.
如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE. (1)当x=4时,求四边形ABED的周长; (2)当x为何值时,△BED是等腰三角形?
如图,在△ABC中,∠BAC=90°,AB=9,AC=12,AD⊥BC,垂足为D. (1)求BC的长;(2)求BD的长.
如图,在四边形ABCD中,∠DAB=∠DCB=90°,对角线AC与BD相交于点O,M、N分别是边BD、AC的中点. (1)求证:MN⊥AC; (2)当AC=8cm,BD=10cm时,求MN的长.