已知线段 AB ⊥ 直线 l 于点 B ,点 D 在直线 l 上,分别以 AB 、 AD 为边作等边三角形 ABC 和等边三角形 ADE ,直线 CE 交直线 l 于点 F .
(1)当点 F 在线段 BD 上时,如图①,求证: DF = CE − CF ;
(2)当点 F 在线段 BD 的延长线上时,如图②;当点 F 在线段 DB 的延长线上时,如图③,请分别写出线段 DF 、 CE 、 CF 之间的数量关系,在图②、图③中选一个进行证明;
(3)在(1)、(2)的条件下,若 BD = 2 BF , EF = 6 ,则 CF = .
已知关于x的不等式组. (1)求该不等式组的解集; (2)a,b都是该不等式组的整数解,求代数式a2-b2的值.
某公司对工作五年及以上的员工施行新的绩效考核制度,现拟定工作业绩W=P+1200,其中P的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由部分的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由两部分的和组成,一部分与x2成正比,另一部分与nx成正比,在试行过程中得到了如下两组数据:①工作12年的员工,若其工作数量为50单位,则其工作业绩为3700元;②工作16年的员工,若其工作数量为80单位,则其工作业绩为6320元. (1)试用含x和n的式子表示W; (2)若某员工的工作业绩为4080元,工作数量为40单位,求该员工的工作年限; (3)若员工的工作年限为10年,若要使其工作业绩最高,其工作数量应为多少单位?此时他的工作业绩为多少元?
问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求: 尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有,,. 类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明. 拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.
如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,C是线段AB的中点,连接OC,并过点A作OC的垂线,垂足为D,交x轴于点E,已知tan∠OAD=. (1)求2∠OAD的正切值; (2)若OC=. ①求直线AB的解析式; ②求点D的坐标.
如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG. (1)求证:BE=2CF; (2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.