初中数学

如图1,二次函数 y 1 = ( x - 2 ) ( x - 4 ) 的图象与 x 轴交于 A B 两点(点 A 在点 B 的左侧),其对称轴 l x 轴交于点 C ,它的顶点为点 D

(1)写出点 D 的坐标        

(2)点 P 在对称轴 l 上,位于点 C 上方,且 CP = 2 CD ,以 P 为顶点的二次函数 y 2 = a x 2 + bx + c ( a 0 ) 的图象过点 A

①试说明二次函数 y 2 = a x 2 + bx + c ( a 0 ) 的图象过点 B

②点 R 在二次函数 y 1 = ( x - 2 ) ( x - 4 ) 的图象上,到 x 轴的距离为 d ,当点 R 的坐标为      时,二次函数 y 2 = a x 2 + bx + c ( a 0 ) 的图象上有且只有三个点到 x 轴的距离等于 2 d

③如图2,已知 0 < m < 2 ,过点 M ( 0 , m ) x 轴的平行线,分别交二次函数 y 1 = ( x - 2 ) ( x - 4 ) y 2 = a x 2 + bx + c ( a 0 ) 的图象于点 E F G H (点 E G 在对称轴 l 左侧),过点 H x 轴的垂线,垂足为点 N ,交二次函数 y 1 = ( x - 2 ) ( x - 4 ) 的图象于点 Q ,若 ΔGHN ΔEHQ ,求实数 m 的值.

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知点 A ( - 1 , 1 ) B ( 4 , 6 ) 在抛物线 y = a x 2 + bx 上,

(1)求抛物线的解析式;

(2)如图1,点 F 的坐标为 ( 0 m ) ( m > 2 ) ,直线 AF 交抛物线于另一点 G ,过点 G x 轴的垂线,垂足为 H .设抛物线与 x 轴的正半轴交于点 E ,连接 FH AE ,求证: FH / / AE

(3)如图2,直线 AB 分别交 x 轴、 y 轴于 C D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 2 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒1个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时, QM = 2 PM ,直接写出 t 的值.

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,已知一次函数 y = x + 3 的图象与 x 轴、 y 轴分别交于 A B 两点,抛物线 y = - x 2 + bx + c A B 两点,且与 x 轴交于另一点 C

(1)求 b c 的值;

(2)如图1,点 D AC 的中点,点 E 在线段 BD 上,且 BE = 2 ED ,连接 CE 并延长交抛物线于点 M ,求点 M 的坐标;

(3)将直线 AB 绕点 A 按逆时针方向旋转 15 ° 后交 y 轴于点 G ,连接 CG ,如图2, P ΔACG 内一点,连接 PA PC PG ,分别以 AP AG 为边,在他们的左侧作等边 ΔAPR ,等边 ΔAGQ ,连接 QR

①求证: PG = RQ

②求 PA + PC + PG 的最小值,并求出当 PA + PC + PG 取得最小值时点 P 的坐标.

来源:2016年江苏省盐城市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的顶点 A C 分别在 x 轴, y 轴的正半轴上,且 OA = 4 OC = 3 ,若抛物线经过 O A 两点,且顶点在 BC 边上,对称轴交 BE 于点 F ,点 D E 的坐标分别为 ( 3 , 0 ) ( 0 , 1 )

(1)求抛物线的解析式;

(2)猜想 ΔEDB 的形状并加以证明;

(3)点 M 在对称轴右侧的抛物线上,点 N x 轴上,请问是否存在以点 A F M N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点 M 的坐标;若不存在,请说明理由.

来源:2017年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,已知直线 y = 1 2 x + 1 2 与抛物线 y = a x 2 + bx + c 相交于 A ( - 1 , 0 ) B ( 4 , m ) 两点,抛物线 y = a x 2 + bx + c y 轴于点 C ( 0 , - 3 2 ) ,交 x 轴正半轴于 D 点,抛物线的顶点为 M

(1)求抛物线的解析式及点 M 的坐标;

(2)设点 P 为直线 AB 下方的抛物线上一动点,当 ΔPAB 的面积最大时,求此时 ΔPAB 的面积及点 P 的坐标;

(3)点 Q x 轴上一动点,点 N 是抛物线上一点,当 ΔQMN ΔMAD (点 Q 与点 M 对应),求 Q 点坐标.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴于 A B 两点,其中点 A 坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 )

(1)求抛物线的函数表达式;

(2)如图①,连接 AC ,点 P 在抛物线上,且满足 PAB = 2 ACO .求点 P 的坐标;

(3)如图②,点 Q x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ BQ 分别交抛物线的对称轴于点 M N .请问 DM + DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 经过点 A ( - 3 , 0 ) B ( 9 , 0 ) C ( 0 , 4 ) CD 垂直于 y 轴,交抛物线于点 D DE 垂直与 x 轴,垂足为 E l 是抛物线的对称轴,点 F 是抛物线的顶点.

(1)求出二次函数的表达式以及点 D 的坐标;

(2)若 Rt Δ AOC 沿 x 轴向右平移到其直角边 OC 与对称轴 l 重合,再沿对称轴 l 向上平移到点 C 与点 F 重合,得到 Rt A 1 O 1 F ,求此时 Rt A 1 O 1 F 与矩形 OCDE 重叠部分的图形的面积;

(3)若 Rt Δ AOC 沿 x 轴向右平移 t 个单位长度 ( 0 < t 6 ) 得到 Rt A 2 O 2 C 2 Rt A 2 O 2 C 2 Rt Δ OED 重叠部分的图形面积记为 S ,求 S t 之间的函数表达式,并写出自变量 t 的取值范围.

来源:2016年山东省聊城市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于原点及点 A ,且经过点 B ( 4 , 8 ) ,对称轴为直线 x = - 2

(1)求抛物线的解析式;

(2)设直线 y = kx + 4 与抛物线两交点的横坐标分别为 x 1 x 2 ( x 1 < x 2 ) ,当 1 x 2 - 1 x 1 = 1 2 时,求 k 的值;

(3)连接 OB ,点 P x 轴下方抛物线上一动点,过点 P OB 的平行线交直线 AB 于点 Q ,当 S ΔPOQ : S ΔBOQ = 1 : 2 时,求出点 P 的坐标.

(坐标平面内两点 M ( x 1 y 1 ) N ( x 2 y 2 ) 之间的距离 MN = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 )

来源:2018年湖北省荆门市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 是以 AB 为直径的 M 的内接四边形,点 A B x 轴上, ΔMBC 是边长为2的等边三角形,过点 M 作直线 l x 轴垂直,交 M 于点 E ,垂足为点 M ,且点 D 平分 AC ̂

(1)求过 A B E 三点的抛物线的解析式;

(2)求证:四边形 AMCD 是菱形;

(3)请问在抛物线上是否存在一点 P ,使得 ΔABP 的面积等于定值5?若存在,请求出所有的点 P 的坐标;若不存在,请说明理由.

来源:2016年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c 的图象经过点 A ( - 1 , 0 ) B ( 4 , 0 ) C ( - 2 , - 3 ) ,直线 BC y 轴交于点 D E 为二次函数图象上任一点.

(1)求这个二次函数的解析式;

(2)若点 E 在直线 BC 的上方,过 E 分别作 BC y 轴的垂线,交直线 BC 于不同的两点 F G ( F G 的左侧),求 ΔEFG 周长的最大值;

(3)是否存在点 E ,使得 ΔEDB 是以 BD 为直角边的直角三角形?如果存在,求点 E 的坐标;如果不存在,请说明理由.

来源:2016年山东省莱芜市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图①,抛物线 y = - x 2 + ( a + 1 ) x - a x 轴交于 A B 两点(点 A 位于点 B 的左侧),与 y 轴交于点 C .已知 ΔABC 的面积是6.

(1)求 a 的值;

(2)求 ΔABC 外接圆圆心的坐标;

(3)如图②, P 是抛物线上一点, Q 为射线 CA 上一点,且 P Q 两点均在第三象限内, Q A 是位于直线 BP 同侧的不同两点,若点 P x 轴的距离为 d ΔQPB 的面积为 2 d ,且 PAQ = AQB ,求点 Q 的坐标.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c 的图象经过点 A ( - 1 , 0 ) B ( 4 , 0 ) C ( - 2 , - 3 ) ,直线 BC y 轴交于点 D E 为二次函数图象上任一点.

(1)求这个二次函数的解析式;

(2)若点 E 在直线 BC 的上方,过 E 分别作 BC y 轴的垂线,交直线 BC 于不同的两点 F G ( F G 的左侧),求 ΔEFG 周长的最大值;

(3)是否存在点 E ,使得 ΔEDB 是以 BD 为直角边的直角三角形?如果存在,求点 E 的坐标;如果不存在,请说明理由.

来源:2016年山东省莱芜市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

若一次函数 y = - 3 x - 3 的图象与 x 轴, y 轴分别交于 A C 两点,点 B 的坐标为 ( 3 , 0 ) ,二次函数 y = a x 2 + bx + c 的图象过 A B C 三点,如图(1).

(1)求二次函数的表达式;

(2)如图(1),过点 C CD / / x 轴交抛物线于点 D ,点 E 在抛物线上 ( y 轴左侧),若 BC 恰好平分 DBE .求直线 BE 的表达式;

(3)如图(2),若点 P 在抛物线上(点 P y 轴右侧),连接 AP BC 于点 F ,连接 BP S ΔBFP = m S ΔBAF

①当 m = 1 2 时,求点 P 的坐标;

②求 m 的最大值.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系 xOy 中,已知点 A 和点 B 的坐标分别为 A ( - 2 , 0 ) B ( 0 , - 6 ) ,将 Rt Δ AOB 绕点 O 按顺时针方向分别旋转 90 ° 180 ° 得到 Rt A 1 OC Rt Δ EOF .抛物线 C 1 经过点 C A B ;抛物线 C 2 经过点 C E F

(1)点 C 的坐标为      ,点 E 的坐标为      ;抛物线 C 1 的解析式为      .抛物线 C 2 的解析式为        

(2)如果点 P ( x , y ) 是直线 BC 上方抛物线 C 1 上的一个动点.

①若 PCA = ABO 时,求 P 点的坐标;

②如图2,过点 P x 轴的垂线交直线 BC 于点 M ,交抛物线 C 2 于点 N ,记 h = PM + NM + 2 BM ,求 h x 的函数关系式,当 - 5 x - 2 时,求 h 的取值范围.

来源:2018年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

抛物线 L : y = - x 2 + bx + c 经过点 A ( 0 , 1 ) ,与它的对称轴直线 x = 1 交于点 B

(1)直接写出抛物线 L 的解析式;

(2)如图1,过定点的直线 y = kx - k + 4 ( k < 0 ) 与抛物线 L 交于点 M N .若 ΔBMN 的面积等于1,求 k 的值;

(3)如图2,将抛物线 L 向上平移 m ( m > 0 ) 个单位长度得到抛物线 L 1 ,抛物线 L 1 y 轴交于点 C ,过点 C y 轴的垂线交抛物线 L 1 于另一点 D F 为抛物线 L 1 的对称轴与 x 轴的交点, P 为线段 OC 上一点.若 ΔPCD ΔPOF 相似,并且符合条件的点 P 恰有2个,求 m 的值及相应点 P 的坐标.

来源:2018年湖北省武汉市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题计算题