如图1,在平面直角坐标系 xOy 中,已知点 A 和点 B 的坐标分别为 A ( - 2 , 0 ) , B ( 0 , - 6 ) ,将 Rt Δ AOB 绕点 O 按顺时针方向分别旋转 90 ° , 180 ° 得到 Rt △ A 1 OC , Rt Δ EOF .抛物线 C 1 经过点 C , A , B ;抛物线 C 2 经过点 C , E , F .
(1)点 C 的坐标为 ,点 E 的坐标为 ;抛物线 C 1 的解析式为 .抛物线 C 2 的解析式为 ;
(2)如果点 P ( x , y ) 是直线 BC 上方抛物线 C 1 上的一个动点.
①若 ∠ PCA = ∠ ABO 时,求 P 点的坐标;
②如图2,过点 P 作 x 轴的垂线交直线 BC 于点 M ,交抛物线 C 2 于点 N ,记 h = PM + NM + 2 BM ,求 h 与 x 的函数关系式,当 - 5 ⩽ x ⩽ - 2 时,求 h 的取值范围.
计算: | − 2 | + ( 1 2 ) − 1 − 2 cos 45 ° .
先化简,再求值: a 2 − b 2 b ÷ ( a 2 b − a ) ,其中 a = 2 − 1 , b = 1 .
(1)计算: sin 30 ° + ( 2018 − 3 ) 0 − 2 − 1 + | − 4 | ;
(2)化简: ( 1 − 2 x − 1 ) ÷ x − 3 x 2 − 1 .
先化简,再求值 x 2 − y 2 x 2 − 2 xy + y 2 · xy x 2 + xy + x x − y .(其中 x = 1 , y = 2 )
计算: ( 1 3 ) − 1 + ( 8 − 1 ) 0 + 2 sin 45 ° + | 2 − 2 | .