如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于原点及点 A ,且经过点 B ( 4 , 8 ) ,对称轴为直线 x = - 2 .
(1)求抛物线的解析式;
(2)设直线 y = kx + 4 与抛物线两交点的横坐标分别为 x 1 , x 2 ( x 1 < x 2 ) ,当 1 x 2 - 1 x 1 = 1 2 时,求 k 的值;
(3)连接 OB ,点 P 为 x 轴下方抛物线上一动点,过点 P 作 OB 的平行线交直线 AB 于点 Q ,当 S ΔPOQ : S ΔBOQ = 1 : 2 时,求出点 P 的坐标.
(坐标平面内两点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 之间的距离 MN = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 )
七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五·一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,求A,B两个超市“五·一”期间的销售额(只需列出方程即可).
用方程表示数量关系:(1)若数的2倍减去1等于这个数加上5.(2)一种商品按成本价提高40%后标价,再打8折销售,售价为240元,设这件商品的成本价为x元.(3)甲,乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,设乙的速度为x千米/时.
计算:(1); (2);(3); (4);(5);(6);(7); (8).