如图,在直角坐标系 xOy 中,菱形 OABC 的边 OA 在 x 轴正半轴上,点 B , C 在第一象限, ∠ C = 120 ° ,边长 OA = 8 .点 M 从原点 O 出发沿 x 轴正半轴以每秒1个单位长的速度作匀速运动,点 N 从 A 出发沿边 AB - BC - CO 以每秒2个单位长的速度作匀速运动,过点 M 作直线 MP 垂直于 x 轴并交折线 OCB 于 P ,交对角线 OB 于 Q ,点 M 和点 N 同时出发,分别沿各自路线运动,点 N 运动到原点 O 时, M 和 N 两点同时停止运动.
(1)当 t = 2 时,求线段 PQ 的长;
(2)求 t 为何值时,点 P 与 N 重合;
(3)设 ΔAPN 的面积为 S ,求 S 与 t 的函数关系式及 t 的取值范围.
计算: − ( − 2 ) + 8 − 2 sin 45 ° + ( − 1 ) 3 .
已知 a = b + 2018 ,求代数式 2 a − b · a 2 − b 2 a 2 + 2 ab + b 2 ÷ 1 a 2 − b 2 的值.
计算: 12 + ( 1 2 ) − 1 − ( 3 − π ) 0 − | 1 − 4 cos 30 ° | .
天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)在这次调查中,一共抽查了 名学生.
(2)请你补全条形统计图.
(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为 度.
(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?
(1)计算: ( − 2 ) 3 + 16 − 2 sin 30 ° + ( 2019 − π ) 0 + | 3 − 4 |
(2)先化简,再求值: ( x x 2 + x − 1 ) ÷ x 2 − 1 x 2 + 2 x + 1 ,其中 x 的值从不等式组 − x ⩽ 1 2 x − 1 < 5 的整数解中选取.