如图,在直角坐标系 xOy 中,菱形 OABC 的边 OA 在 x 轴正半轴上,点 B , C 在第一象限, ∠ C = 120 ° ,边长 OA = 8 .点 M 从原点 O 出发沿 x 轴正半轴以每秒1个单位长的速度作匀速运动,点 N 从 A 出发沿边 AB - BC - CO 以每秒2个单位长的速度作匀速运动,过点 M 作直线 MP 垂直于 x 轴并交折线 OCB 于 P ,交对角线 OB 于 Q ,点 M 和点 N 同时出发,分别沿各自路线运动,点 N 运动到原点 O 时, M 和 N 两点同时停止运动.
(1)当 t = 2 时,求线段 PQ 的长;
(2)求 t 为何值时,点 P 与 N 重合;
(3)设 ΔAPN 的面积为 S ,求 S 与 t 的函数关系式及 t 的取值范围.
某市总预算 a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.
2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加 b 亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年年初开始逐年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到 3 : 2 .
(1)这三年用于辅助配套的投资将达到多少亿元?
(2)市政府2015年年初对三项工程的总投资是多少亿元?
(3)求搬迁安置投资逐年递减的百分数.
阅读:能够成为直角三角形三条边长的三个正整数 a , b , c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: a = 1 2 ( m 2 - n 2 ) b = mn c = 1 2 ( m 2 + n 2 ) . 其中 m > n > 0 , m , n 是互质的奇数.
应用:当 n = 1 时,求有一边长为5的直角三角形的另外两条边长.
“和谐号”火车从车站出发,在行驶过程中速度 y (单位: m / s ) 与时间 x (单位: s ) 的关系如图所示,其中线段 BC / / x 轴.
请根据图象提供的信息解答下列问题:
(1)当 0 ⩽ x ⩽ 10 ,求 y 关于 x 的函数解析式;
(2)求 C 点的坐标.
YC 市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现将随机抽取的某五天在同一时段的调查数据汇成如下表格.
请回答下列问题:
时间
第一天 7 : 00 - 8 : 00
第二天 7 : 00 - 8 : 00
第三天 7 : 00 - 8 : 00
第四天 7 : 00 - 8 : 00
第五天 7 : 00 - 8 : 00
需要租用自行车却未租到车的人数(人 )
1500
1200
1300
(1)表格中的五个数据(人数)的中位数是多少?
(2)由随机抽样估计,平均每天在 7 : 00 - 8 : 00 需要租用公共自行车的人数是多少?
解不等式组 x 2 ⩾ - 1 2 ( 1 - x ) < 4 - 3 x . .