初中数学

(概念认识)

城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系 xOy ,对两点 A ( x 1 y 1 ) B ( x 2 y 2 ) ,用以下方式定义两点间距离: d ( A , B ) = | x 1 - x 2 | + | y 1 - y 2 |

(数学理解)

(1)①已知点 A ( - 2 , 1 ) ,则 d ( O , A ) =            

②函数 y = - 2 x + 4 ( 0 x 2 ) 的图象如图①所示, B 是图象上一点, d ( O , B ) = 3 ,则点 B 的坐标是        

(2)函数 y = 4 x ( x > 0 ) 的图象如图②所示.求证:该函数的图象上不存在点 C ,使 d ( O , C ) = 3

(3)函数 y = x 2 - 5 x + 7 ( x 0 ) 的图象如图③所示, D 是图象上一点,求 d ( O , D ) 的最小值及对应的点 D 的坐标.

(问题解决)

(4)某市要修建一条通往景观湖的道路,如图④,道路以 M 为起点,先沿 MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)

来源:2019年江苏省南京市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知, m n 是一元二次方程 x 2 + 4 x + 3 = 0 的两个实数根,且 | m | < | n | ,抛物线 y = x 2 + bx + c 的图象经过点 A ( m , 0 ) B ( 0 , n ) ,如图所示.

(1)求这个抛物线的解析式;

(2)设(1)中的抛物线与 x 轴的另一个交点为 C ,抛物线的顶点为 D ,试求出点 C D 的坐标,并判断 ΔBCD 的形状;

(3)点 P 是直线 BC 上的一个动点(点 P 不与点 B 和点 C 重合),过点 P x 轴的垂线,交抛物线于点 M ,点 Q 在直线 BC 上,距离点 P 2 个单位长度,设点 P 的横坐标为 t ΔPMQ 的面积为 S ,求出 S t 之间的函数关系式.

来源:2016年山东省德州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,规定:抛物线 y = a ( x - h ) 2 + k 的伴随直线为 y = a ( x - h ) + k .例如:抛物线 y = 2 ( x + 1 ) 2 - 3 的伴随直线为 y = 2 ( x + 1 ) - 3 ,即 y = 2 x - 1

(1)在上面规定下,抛物线 y = ( x + 1 ) 2 - 4 的顶点坐标为              ,伴随直线为                  ,抛物线 y = ( x + 1 ) 2 - 4 与其伴随直线的交点坐标为                      

(2)如图,顶点在第一象限的抛物线 y = m ( x - 1 ) 2 - 4 m 与其伴随直线相交于点 A B (点 A 在点 B 的左侧),与 x 轴交于点 C D

①若 CAB = 90 ° ,求 m 的值;

②如果点 P ( x , y ) 是直线 BC 上方抛物线上的一个动点, ΔPBC 的面积记为 S ,当 S 取得最大值 27 4 时,求 m 的值.

来源:2017年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( b < 0 ) x 轴只有一个公共点.

(1)若抛物线与 x 轴的公共点坐标为 ( 2 , 0 ) ,求 a c 满足的关系式;

(2)设 A 为抛物线上的一定点,直线 l : y = kx + 1 - k 与抛物线交于点 B C ,直线 BD 垂直于直线 y = - 1 ,垂足为点 D .当 k = 0 时,直线 l 与抛物线的一个交点在 y 轴上,且 ΔABC 为等腰直角三角形.

①求点 A 的坐标和抛物线的解析式;

②证明:对于每个给定的实数 k ,都有 A D C 三点共线.

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + bx + c 经过点 A ( - 2 , 0 ) B ( 8 , 0 )

(1)求抛物线的解析式;

(2)点 C 是抛物线与 y 轴的交点,连接 BC ,设点 P 是抛物线上在第一象限内的点, PD BC ,垂足为点 D

①是否存在点 P ,使线段 PD 的长度最大?若存在,请求出点 P 的坐标;若不存在,请说明理由;

②当 ΔPDC ΔCOA 相似时,求点 P 的坐标.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c 过点 A ( 0 , 2 ) ,且抛物线上任意不同两点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都满足:当 x 1 < x 2 < 0 时, ( x 1 - x 2 ) ( y 1 - y 2 ) > 0 ;当 0 < x 1 < x 2 时, ( x 1 - x 2 ) ( y 1 - y 2 ) < 0 .以原点 O 为圆心, OA 为半径的圆与抛物线的另两个交点为 B C ,且 B C 的左侧, ΔABC 有一个内角为 60 °

(1)求抛物线的解析式;

(2)若 MN 与直线 y = - 2 3 x 平行,且 M N 位于直线 BC 的两侧, y 1 > y 2 ,解决以下问题:

①求证: BC 平分 MBN

②求 ΔMBC 外心的纵坐标的取值范围.

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,抛物线 C 1 : y = a x 2 - 2 ax + c ( a < 0 ) x 轴交于 A B 两点,与 y 轴交于点 C .已知点 A 的坐标为 ( - 1 , 0 ) ,点 O 为坐标原点, OC = 3 OA ,抛物线 C 1 的顶点为 G

(1)求出抛物线 C 1 的解析式,并写出点 G 的坐标;

(2)如图2,将抛物线 C 1 向下平移 k ( k > 0 ) 个单位,得到抛物线 C 2 ,设 C 2 x 轴的交点为 A ' B ' ,顶点为 G ' ,当△ A ' B ' G ' 是等边三角形时,求 k 的值:

(3)在(2)的条件下,如图3,设点 M x 轴正半轴上一动点,过点 M x 轴的垂线分别交抛物线 C 1 C 2 P Q 两点,试探究在直线 y = - 1 上是否存在点 N ,使得以 P Q N 为顶点的三角形与 ΔAOQ 全等,若存在,直接写出点 M N 的坐标:若不存在,请说明理由.

来源:2018年湖北省随州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) 与直线 y = x + 1 相交于 A ( - 1 , 0 ) B ( 4 , m ) 两点,且抛物线经过点 C ( 5 , 0 )

(1)求抛物线的解析式;

(2)点 P 是抛物线上的一个动点(不与点 A 、点 B 重合),过点 P 作直线 PD x 轴于点 D ,交直线 AB 于点 E

①当 PE = 2 ED 时,求 P 点坐标;

②是否存在点 P 使 ΔBEC 为等腰三角形?若存在请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = 4 9 x 2 - 4 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C C 的半径为 5 P C 上一动点.

(1)点 B C 的坐标分别为 B (        ) C (       )

(2)是否存在点 P ,使得 ΔPBC 为直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)连接 PB ,若 E PB 的中点,连接 OE ,则 OE 的最大值 =       

来源:2017年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - 3 5 [ ( x - 2 ) 2 + n ] x 轴交于点 A ( m - 2 , 0 ) B ( 2 m + 3 , 0 ) (点 A 在点 B 的左侧),与 y 轴交于点 C ,连接 BC

(1)求 m n 的值;

(2)如图2,点 N 为抛物线上的一动点,且位于直线 BC 上方,连接 CN BN .求 ΔNBC 面积的最大值;

(3)如图3,点 M P 分别为线段 BC 和线段 OB 上的动点,连接 PM PC ,是否存在这样的点 P ,使 ΔPCM 为等腰三角形, ΔPMB 为直角三角形同时成立?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2016年山东省日照市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y = - 2 x + 10 x 轴, y 轴相交于 A B 两点,点 C 的坐标是 ( 8 , 4 ) ,连接 AC BC

(1)求过 O A C 三点的抛物线的解析式,并判断 ΔABC 的形状;

(2)动点 P 从点 O 出发,沿 OB 以每秒2个单位长度的速度向点 B 运动;同时,动点 Q 从点 B 出发,沿 BC 以每秒1个单位长度的速度向点 C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为 t 秒,当 t 为何值时, PA = QA

(3)在抛物线的对称轴上,是否存在点 M ,使以 A B M 为顶点的三角形是等腰三角形?若存在,求出点 M 的坐标;若不存在,请说明理由.

来源:2016年山东省临沂市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,已知直线 y = 1 2 x + 1 2 与抛物线 y = a x 2 + bx + c 相交于 A ( - 1 , 0 ) B ( 4 , m ) 两点,抛物线 y = a x 2 + bx + c y 轴于点 C ( 0 , - 3 2 ) ,交 x 轴正半轴于 D 点,抛物线的顶点为 M

(1)求抛物线的解析式及点 M 的坐标;

(2)设点 P 为直线 AB 下方的抛物线上一动点,当 ΔPAB 的面积最大时,求此时 ΔPAB 的面积及点 P 的坐标;

(3)点 Q x 轴上一动点,点 N 是抛物线上一点,当 ΔQMN ΔMAD (点 Q 与点 M 对应),求 Q 点坐标.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴于 A B 两点,其中点 A 坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 )

(1)求抛物线的函数表达式;

(2)如图①,连接 AC ,点 P 在抛物线上,且满足 PAB = 2 ACO .求点 P 的坐标;

(3)如图②,点 Q x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ BQ 分别交抛物线的对称轴于点 M N .请问 DM + DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 经过点 A ( - 3 , 0 ) B ( 9 , 0 ) C ( 0 , 4 ) CD 垂直于 y 轴,交抛物线于点 D DE 垂直与 x 轴,垂足为 E l 是抛物线的对称轴,点 F 是抛物线的顶点.

(1)求出二次函数的表达式以及点 D 的坐标;

(2)若 Rt Δ AOC 沿 x 轴向右平移到其直角边 OC 与对称轴 l 重合,再沿对称轴 l 向上平移到点 C 与点 F 重合,得到 Rt A 1 O 1 F ,求此时 Rt A 1 O 1 F 与矩形 OCDE 重叠部分的图形的面积;

(3)若 Rt Δ AOC 沿 x 轴向右平移 t 个单位长度 ( 0 < t 6 ) 得到 Rt A 2 O 2 C 2 Rt A 2 O 2 C 2 Rt Δ OED 重叠部分的图形面积记为 S ,求 S t 之间的函数表达式,并写出自变量 t 的取值范围.

来源:2016年山东省聊城市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c 的图象经过点 A ( - 1 , 0 ) B ( 4 , 0 ) C ( - 2 , - 3 ) ,直线 BC y 轴交于点 D E 为二次函数图象上任一点.

(1)求这个二次函数的解析式;

(2)若点 E 在直线 BC 的上方,过 E 分别作 BC y 轴的垂线,交直线 BC 于不同的两点 F G ( F G 的左侧),求 ΔEFG 周长的最大值;

(3)是否存在点 E ,使得 ΔEDB 是以 BD 为直角边的直角三角形?如果存在,求点 E 的坐标;如果不存在,请说明理由.

来源:2016年山东省莱芜市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题计算题