(概念认识)
城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系 ,对两点 , 和 , ,用以下方式定义两点间距离: .
(数学理解)
(1)①已知点 ,则 .
②函数 的图象如图①所示, 是图象上一点, ,则点 的坐标是 .
(2)函数 的图象如图②所示.求证:该函数的图象上不存在点 ,使 .
(3)函数 的图象如图③所示, 是图象上一点,求 的最小值及对应的点 的坐标.
(问题解决)
(4)某市要修建一条通往景观湖的道路,如图④,道路以 为起点,先沿 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)
已知, , 是一元二次方程 的两个实数根,且 ,抛物线 的图象经过点 , ,如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与 轴的另一个交点为 ,抛物线的顶点为 ,试求出点 , 的坐标,并判断 的形状;
(3)点 是直线 上的一个动点(点 不与点 和点 重合),过点 作 轴的垂线,交抛物线于点 ,点 在直线 上,距离点 为 个单位长度,设点 的横坐标为 , 的面积为 ,求出 与 之间的函数关系式.
在平面直角坐标系 中,规定:抛物线 的伴随直线为 .例如:抛物线 的伴随直线为 ,即 .
(1)在上面规定下,抛物线 的顶点坐标为 ,伴随直线为 ,抛物线 与其伴随直线的交点坐标为 和 ;
(2)如图,顶点在第一象限的抛物线 与其伴随直线相交于点 , (点 在点 的左侧),与 轴交于点 , .
①若 ,求 的值;
②如果点 是直线 上方抛物线上的一个动点, 的面积记为 ,当 取得最大值 时,求 的值.
已知抛物线 与 轴只有一个公共点.
(1)若抛物线与 轴的公共点坐标为 ,求 、 满足的关系式;
(2)设 为抛物线上的一定点,直线 与抛物线交于点 、 ,直线 垂直于直线 ,垂足为点 .当 时,直线 与抛物线的一个交点在 轴上,且 为等腰直角三角形.
①求点 的坐标和抛物线的解析式;
②证明:对于每个给定的实数 ,都有 、 、 三点共线.
在平面直角坐标系 中,抛物线 经过点 , .
(1)求抛物线的解析式;
(2)点 是抛物线与 轴的交点,连接 ,设点 是抛物线上在第一象限内的点, ,垂足为点 .
①是否存在点 ,使线段 的长度最大?若存在,请求出点 的坐标;若不存在,请说明理由;
②当 与 相似时,求点 的坐标.
已知抛物线 过点 ,且抛物线上任意不同两点 , , , 都满足:当 时, ;当 时, .以原点 为圆心, 为半径的圆与抛物线的另两个交点为 , ,且 在 的左侧, 有一个内角为 .
(1)求抛物线的解析式;
(2)若 与直线 平行,且 , 位于直线 的两侧, ,解决以下问题:
①求证: 平分 ;
②求 外心的纵坐标的取值范围.
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 .已知点 的坐标为 ,点 为坐标原点, ,抛物线 的顶点为 .
(1)求出抛物线 的解析式,并写出点 的坐标;
(2)如图2,将抛物线 向下平移 个单位,得到抛物线 ,设 与 轴的交点为 、 ,顶点为 ,当△ 是等边三角形时,求 的值:
(3)在(2)的条件下,如图3,设点 为 轴正半轴上一动点,过点 作 轴的垂线分别交抛物线 、 于 、 两点,试探究在直线 上是否存在点 ,使得以 、 、 为顶点的三角形与 全等,若存在,直接写出点 , 的坐标:若不存在,请说明理由.
如图,抛物线 与直线 相交于 , 两点,且抛物线经过点 .
(1)求抛物线的解析式;
(2)点 是抛物线上的一个动点(不与点 、点 重合),过点 作直线 轴于点 ,交直线 于点 .
①当 时,求 点坐标;
②是否存在点 使 为等腰三角形?若存在请直接写出点 的坐标;若不存在,请说明理由.
如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 , 的半径为 , 为 上一动点.
(1)点 , 的坐标分别为 , ;
(2)是否存在点 ,使得 为直角三角形?若存在,求出点 的坐标;若不存在,请说明理由;
(3)连接 ,若 为 的中点,连接 ,则 的最大值 .
如图1,抛物线 与 轴交于点 和 (点 在点 的左侧),与 轴交于点 ,连接 .
(1)求 、 的值;
(2)如图2,点 为抛物线上的一动点,且位于直线 上方,连接 、 .求 面积的最大值;
(3)如图3,点 、 分别为线段 和线段 上的动点,连接 、 ,是否存在这样的点 ,使 为等腰三角形, 为直角三角形同时成立?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,直线 与 轴, 轴相交于 , 两点,点 的坐标是 ,连接 , .
(1)求过 , , 三点的抛物线的解析式,并判断 的形状;
(2)动点 从点 出发,沿 以每秒2个单位长度的速度向点 运动;同时,动点 从点 出发,沿 以每秒1个单位长度的速度向点 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为 秒,当 为何值时, ?
(3)在抛物线的对称轴上,是否存在点 ,使以 , , 为顶点的三角形是等腰三角形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知直线 与抛物线 相交于 , 两点,抛物线 交 轴于点 ,交 轴正半轴于 点,抛物线的顶点为 .
(1)求抛物线的解析式及点 的坐标;
(2)设点 为直线 下方的抛物线上一动点,当 的面积最大时,求此时 的面积及点 的坐标;
(3)点 为 轴上一动点,点 是抛物线上一点,当 (点 与点 对应),求 点坐标.
如图,抛物线 交 轴于 、 两点,其中点 坐标为 ,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图①,连接 ,点 在抛物线上,且满足 .求点 的坐标;
(3)如图②,点 为 轴下方抛物线上任意一点,点 是抛物线对称轴与 轴的交点,直线 、 分别交抛物线的对称轴于点 、 .请问 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
如图,已知抛物线 经过点 , 和 . 垂直于 轴,交抛物线于点 , 垂直与 轴,垂足为 , 是抛物线的对称轴,点 是抛物线的顶点.
(1)求出二次函数的表达式以及点 的坐标;
(2)若 沿 轴向右平移到其直角边 与对称轴 重合,再沿对称轴 向上平移到点 与点 重合,得到 △ ,求此时 △ 与矩形 重叠部分的图形的面积;
(3)若 沿 轴向右平移 个单位长度 得到 △ , △ 与 重叠部分的图形面积记为 ,求 与 之间的函数表达式,并写出自变量 的取值范围.