已知抛物线 y = a x 2 + bx + c 过点 A ( 0 , 2 ) ,且抛物线上任意不同两点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 都满足:当 x 1 < x 2 < 0 时, ( x 1 - x 2 ) ( y 1 - y 2 ) > 0 ;当 0 < x 1 < x 2 时, ( x 1 - x 2 ) ( y 1 - y 2 ) < 0 .以原点 O 为圆心, OA 为半径的圆与抛物线的另两个交点为 B , C ,且 B 在 C 的左侧, ΔABC 有一个内角为 60 ° .
(1)求抛物线的解析式;
(2)若 MN 与直线 y = - 2 3 x 平行,且 M , N 位于直线 BC 的两侧, y 1 > y 2 ,解决以下问题:
①求证: BC 平分 ∠ MBN ;
②求 ΔMBC 外心的纵坐标的取值范围.
解方程:=.
计算:·÷(-)3.
计算:-|-3|+(π-)0-2-2.
(1)计算: (2)解方程:
(本题满分8分) 哈尔滨市某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图.已经知A、B两组发言人数直方图高度比为1∶5. 请结合图中相关的数据回答下列问题: (1)本次调查的样本容量是多少? (2)求出C组的人数并补全直方图. (3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.