如图,抛物线 与直线 相交于 , 两点,且抛物线经过点 .
(1)求抛物线的解析式;
(2)点 是抛物线上的一个动点(不与点 、点 重合),过点 作直线 轴于点 ,交直线 于点 .
①当 时,求 点坐标;
②是否存在点 使 为等腰三角形?若存在请直接写出点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,其对称轴交抛物线于点 ,交 轴于点 ,已知 .
(1)求抛物线的解析式及点 的坐标;
(2)连接 , 为抛物线上一动点,当 时,求点 的坐标;
(3)平行于 轴的直线交抛物线于 、 两点,以线段 为对角线作菱形 ,当点 在 轴上,且 时,求菱形对角线 的长.
直线 交 轴于点 ,交 轴于点 ,顶点为 的抛物线 经过点 ,交 轴于另一点 ,连接 , , ,如图所示.
(1)直接写出抛物线的解析式和点 , , 的坐标;
(2)动点 在 上以每秒2个单位长的速度由点 向点 运动,同时动点 在 上以每秒3个单位长的速度由点 向点 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 秒. 交线段 于点 .
①当 时,求 的值;
②过点 作 ,垂足为点 ,过点 作 交线段 或 于点 ,当 时,求 的值.
如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,点 与点 关于 轴对称.
(1)求点 、 、 的坐标.
(2)求直线 的解析式.
(3)在直线 下方的抛物线上是否存在一点 ,使 的面积最大?若存在,求出点 的坐标;若不存在,请说明理由.
如图,抛物线 与坐标轴交点分别为 , , ,作直线 .
(1)求抛物线的解析式;
(2)点 为抛物线上第一象限内一动点,过点 作 轴于点 ,设点 的横坐标为 ,求 的面积 与 的函数关系式;
(3)条件同(2),若 与 相似,求点 的坐标.
已知点 、 在抛物线 上,
(1)求抛物线的解析式;
(2)如图1,点 的坐标为 , ,直线 交抛物线于另一点 ,过点 作 轴的垂线,垂足为 .设抛物线与 轴的正半轴交于点 ,连接 、 ,求证: ;
(3)如图2,直线 分别交 轴、 轴于 、 两点.点 从点 出发,沿射线 方向匀速运动,速度为每秒 个单位长度;同时点 从原点 出发,沿 轴正方向匀速运动,速度为每秒1个单位长度.点 是直线 与抛物线的一个交点,当运动到 秒时, ,直接写出 的值.
如图,抛物线 与 轴交于原点及点 ,且经过点 ,对称轴为直线 .
(1)求抛物线的解析式;
(2)设直线 与抛物线两交点的横坐标分别为 , ,当 时,求 的值;
(3)连接 ,点 为 轴下方抛物线上一动点,过点 作 的平行线交直线 于点 ,当 时,求出点 的坐标.
(坐标平面内两点 , , , 之间的距离
如图,在平面直角坐标系中,矩形 的顶点 , 分别在 轴, 轴的正半轴上,且 , ,若抛物线经过 , 两点,且顶点在 边上,对称轴交 于点 ,点 , 的坐标分别为 , .
(1)求抛物线的解析式;
(2)猜想 的形状并加以证明;
(3)点 在对称轴右侧的抛物线上,点 在 轴上,请问是否存在以点 , , , 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图1(注:与图2完全相同),二次函数 的图象与 轴交于 , 两点,与 轴交于点 .
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为 ,求 的面积(请在图1中探索);
(3)若点 , 同时从 点出发,都以每秒1个单位长度的速度分别沿 , 边运动,其中一点到达端点时,另一点也随之停止运动,当 , 运动到 秒时, 沿 所在的直线翻折,点 恰好落在抛物线上 点处,请直接判定此时四边形 的形状,并求出 点坐标(请在图2中探索).
如图,在平面直角坐标系中,四边形 是以 为直径的 的内接四边形,点 , 在 轴上, 是边长为2的等边三角形,过点 作直线 与 轴垂直,交 于点 ,垂足为点 ,且点 平分 .
(1)求过 , , 三点的抛物线的解析式;
(2)求证:四边形 是菱形;
(3)请问在抛物线上是否存在一点 ,使得 的面积等于定值5?若存在,请求出所有的点 的坐标;若不存在,请说明理由.
如图,已知抛物线 经过 , 两点,与 轴的另一个交点为 ,顶点为 ,连接 .
(1)求该抛物线的表达式;
(2)点 为该抛物线上一动点(与点 、 不重合),设点 的横坐标为 .
①当点 在直线 的下方运动时,求 的面积的最大值;
②该抛物线上是否存在点 ,使得 ?若存在,求出所有点 的坐标;若不存在,请说明理由.
如图,二次函数 的图象与 轴交于点 , ,与 轴交于点 ,抛物线的顶点为 ,其对称轴与线段 交于点 ,垂直于 轴的动直线 分别交抛物线和线段 于点 和点 ,动直线 在抛物线的对称轴的右侧(不含对称轴)沿 轴正方向移动到 点.
(1)求出二次函数 和 所在直线的表达式;
(2)在动直线 移动的过程中,试求使四边形 为平行四边形的点 的坐标;
(3)连接 , ,在动直线 移动的过程中,抛物线上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?如果存在,求出点 的坐标;如果不存在,请说明理由.
如图,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过 、 两点,与 轴的另一个交点为 .
(1)求抛物线的解析式;
(2)点 是第一象限抛物线上的点,连接 交直线 于点 .设点 的横坐标为 , 与 的比值为 ,求 与 的函数关系式,并求出 与 的比值的最大值;
(3)点 是抛物线对称轴上的一动点,连接 、 ,设 外接圆的圆心为 ,当 的值最大时,求点 的坐标.