直线 y = - 3 2 x + 3 交 x 轴于点 A ,交 y 轴于点 B ,顶点为 D 的抛物线 y = - 3 4 x 2 + 2 mx - 3 m 经过点 A ,交 x 轴于另一点 C ,连接 BD , AD , CD ,如图所示.
(1)直接写出抛物线的解析式和点 A , C , D 的坐标;
(2)动点 P 在 BD 上以每秒2个单位长的速度由点 B 向点 D 运动,同时动点 Q 在 CA 上以每秒3个单位长的速度由点 C 向点 A 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 t 秒. PQ 交线段 AD 于点 E .
①当 ∠ DPE = ∠ CAD 时,求 t 的值;
②过点 E 作 EM ⊥ BD ,垂足为点 M ,过点 P 作 PN ⊥ BD 交线段 AB 或 AD 于点 N ,当 PN = EM 时,求 t 的值.
(2)先化简,再求值: – ,其中x = –3
(1)计算:3(–π)0– + (–1)2011
计算:(1)2×(-5)+23-3÷.
解方程组 ,并求 的值。
计算或化简: (1),(2)。