如图1,已知一次函数 y = x + 3 的图象与 x 轴、 y 轴分别交于 A 、 B 两点,抛物线 y = - x 2 + bx + c 过 A 、 B 两点,且与 x 轴交于另一点 C .
(1)求 b 、 c 的值;
(2)如图1,点 D 为 AC 的中点,点 E 在线段 BD 上,且 BE = 2 ED ,连接 CE 并延长交抛物线于点 M ,求点 M 的坐标;
(3)将直线 AB 绕点 A 按逆时针方向旋转 15 ° 后交 y 轴于点 G ,连接 CG ,如图2, P 为 ΔACG 内一点,连接 PA 、 PC 、 PG ,分别以 AP 、 AG 为边,在他们的左侧作等边 ΔAPR ,等边 ΔAGQ ,连接 QR
①求证: PG = RQ ;
②求 PA + PC + PG 的最小值,并求出当 PA + PC + PG 取得最小值时点 P 的坐标.
已知一次函数的图象与反比例函数图象交于点 P(4,n)。求P点坐标求一次函数的解析式若点A(,),B(,)在上述一次函数的图象上,且,试比较、的大小,并说明理由。
甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城。已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城。求两车的速度。
已知:y是x一次函数,且当=2时,;且当=—2时,y=1试求与之间的函数关系式并画出图象;在图象上标出与x轴、y轴的交点坐标当取何值时,=5 ?
解方程:
先化简后求值:其中x=+1