初中数学

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 4 , 0 ) ,与 y 轴交于点 C ( 0 , 4 )

(1)求抛物线的解析式;

(2)点 P x 轴下方的抛物线上,过点 P 的直线 y = x + m 与直线 BC 交于点 E ,与 y 轴交于点 F ,求 PE + EF 的最大值;

(3)点 D 为抛物线对称轴上一点.

①当 ΔBCD 是以 BC 为直角边的直角三角形时,直接写出点 D 的坐标;

②若 ΔBCD 是锐角三角形,直接写出点 D 的纵坐标 n 的取值范围.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 - 2 ax - 3 a ( a 0 ) x 轴交于点 A B .与 y 轴交于点 C .连接 AC BC .已知 ΔABC 的面积为2.

(1)求抛物线的解析式;

(2)平行于 x 轴的直线与抛物线从左到右依次交于 P Q 两点.过 P Q x 轴作垂线,垂足分别为 G H .若四边形 PGHQ 为正方形,求正方形的边长;

(3)如图2,平行于 y 轴的直线交抛物线于点 M ,交 x 轴于点 N ( 2 , 0 ) .点 D 是抛物线上 A M 之间的一动点,且点 D 不与 A M 重合,连接 DB MN 于点 E .连接 AD 并延长交 MN 于点 F .在点 D 运动过程中, 3 NE + NF 是否为定值?若是,求出这个定值;若不是,请说明理由.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,抛物线的顶点为 A ( h , - 1 ) ,与 y 轴交于点 B ( 0 , - 1 2 ) ,点 F ( 2 , 1 ) 为其对称轴上的一个定点.

(1)求这条抛物线的函数解析式;

(2)已知直线 l 是过点 C ( 0 , - 3 ) 且垂直于 y 轴的定直线,若抛物线上的任意一点 P ( m , n ) 到直线 l 的距离为 d ,求证: PF = d

(3)已知坐标平面内的点 D ( 4 , 3 ) ,请在抛物线上找一点 Q ,使 ΔDFQ 的周长最小,并求此时 ΔDFQ 周长的最小值及点 Q 的坐标.

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c 经过点 A ( - 3 , 0 ) 和点 B ( 2 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的函数表达式;

(2)点 P 是该抛物线上的动点,且位于 y 轴的左侧.

①如图1,过点 P PD x 轴于点 D ,作 PE y 轴于点 E ,当 PD = 2 PE 时,求 PE 的长;

②如图2,该抛物线上是否存在点 P ,使得 ACP = OCB ?若存在,请求出所有点 P 的坐标;若不存在,请说明理由.

来源:2020年海南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 C 1 : y = x 2 2 x 与抛物线 C 2 : y = a x 2 + bx 开口大小相同、方向相反,它们相交于 O C 两点,且分别与 x 轴的正半轴交于点 B ,点 A OA = 2 OB

(1)求抛物线 C 2 的解析式;

(2)在抛物线 C 2 的对称轴上是否存在点 P ,使 PA + PC 的值最小?若存在,求出点 P 的坐标,若不存在,说明理由;

(3) M 是直线 OC 上方抛物线 C 2 上的一个动点,连接 MO MC M 运动到什么位置时, ΔMOC 面积最大?并求出最大面积.

来源:2019年贵州省遵义市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于 y 轴对称,则把该函数称之为“ T 函数”,其图象上关于 y 轴对称的不同两点叫做一对“ T 点”.根据该约定,完成下列各题.

(1)若点 A ( 1 , r ) 与点 B ( s , 4 ) 是关于 x 的“ T 函数” y = - 4 x ( x < 0 ) t x 2 x 0 , t 0 , t 是常数 的图象上的一对“ T 点”,则 r =    s =    t =   (将正确答案填在相应的横线上);

(2)关于 x 的函数 y = kx + p ( k p 是常数)是“ T 函数”吗?如果是,指出它有多少对“ T 点”如果不是,请说明理由;

(3)若关于 x 的“ T 函数” y = a x 2 + bx + c ( a > 0 ,且 a b c 是常数)经过坐标原点 O ,且与直线 l : y = mx + n ( m 0 n > 0 ,且 m n 是常数)交于 M ( x 1 y 1 ) N ( x 2 y 2 ) 两点,当 x 1 x 2 满足 ( 1 - x 1 ) - 1 + x 2 = 1 时,直线 l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx 1 x 轴的交点为 A ( 1 , 0 ) B ( 2 , 0 ) ,且与 y 轴交于 C 点.

(1)求该抛物线的表达式;

(2)点 C 关于 x 轴的对称点为 C 1 M 是线段 B C 1 上的一个动点(不与 B C 1 重合), ME x 轴, MF y 轴,垂足分别为 E F ,当点 M 在什么位置时,矩形 MFOE 的面积最大?说明理由.

(3)已知点 P 是直线 y = 1 2 x + 1 上的动点,点 Q 为抛物线上的动点,当以 C C 1 P Q 为顶点的四边形为平行四边形时,求出相应的点 P 和点 Q 的坐标.

来源:2019年贵州省铜仁市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上的动点.

(1)抛物线的解析式为  ,抛物线的顶点坐标为  

(2)如图1,连接 OP BC 于点 D ,当 S ΔCPD : S ΔBPD = 1 : 2 时,请求出点 D 的坐标;

(3)如图2,点 E 的坐标为 ( 0 , 1 ) ,点 G x 轴负半轴上的一点, OGE = 15 ° ,连接 PE ,若 PEG = 2 OGE ,请求出点 P 的坐标;

(4)如图3,是否存在点 P ,使四边形 BOCP 的面积为8?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2019年贵州省黔东南州中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + c 的顶点是 A ( 1 , 3 ) ,将 OA 绕点 O 顺时针旋转 90 ° 后得到 OB ,点 B 恰好在抛物线上, OB 与抛物线的对称轴交于点 C

(1)求抛物线的解析式;

(2) P 是线段 AC 上一动点,且不与点 A C 重合,过点 P 作平行于 x 轴的直线,与 ΔOAB 的边分别交于 M N 两点,将 ΔAMN 以直线 MN 为对称轴翻折,得到△ A ' MN ,设点 P 的纵坐标为 m

①当△ A ' MN ΔOAB 内部时,求 m 的取值范围;

②是否存在点 P ,使 S A ' MN = 5 6 S OA ' B ,若存在,求出满足条件 m 的值;若不存在,请说明理由.

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c 与直线 y = 1 2 x + 3 分别相交于 A B 两点,且此抛物线与 x 轴的一个交点为 C ,连接 AC BC .已知 A ( 0 , 3 ) C ( 3 , 0 )

(1)求抛物线的解析式;

(2)在抛物线对称轴 l 上找一点 M ,使 | MB MC | 的值最大,并求出这个最大值;

(3)点 P y 轴右侧抛物线上一动点,连接 PA ,过点 P PQ PA y 轴于点 Q ,问:是否存在点 P 使得以 A P Q 为顶点的三角形与 ΔABC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

来源:2019年贵州省安顺市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知抛物线 y x 2 + bx + c 的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C

(1)填空:b  c  ,直线AC的解析式为  

(2)直线 x t x轴相交于点H

①当 t =﹣ 3 时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若 COD MAN ,求出此时点D的坐标;

②当 3 t <﹣ 1 时(如图2),直线 x t 与线段ACAM和抛物线分别相交于点EFP.试证明线段HEEFFP总能组成等腰三角形;如果此等腰三角形底角的余弦值为 3 5 ,求此时t的值.

来源:2016年湖北省孝感市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, O为坐标原点,抛物线 y a x 2 + 2 xa + c 经过 A(﹣4,0), B(0,4)两点,与 x轴交于另一点 C,直线 y x + 5 x轴交于点 D,与 y轴交于点 E

(1)求抛物线的解析式;

(2)点 P是第二象限抛物线上的一个动点,连接 EP,过点 EEP的垂线 l,在 l上截取线段 EF,使 EFEP,且点 F在第一象限,过点 F FM x 轴于点 M,设点 P的横坐标为 t,线段 FM的长度为 d,求 dt之间的函数关系式(不要求写出自变量 t的取值范围);

(3)在(2)的条件下,过点 E EH ED MF的延长线于点 H,连接 DH,点 GDH的中点,当直线 PG经过 AC的中点 Q时,求点 F的坐标.

来源:2016年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c x 轴交于 A ( 3 0 ) B 两点(点 B 在点 A 的左侧),与 y 轴交于点 C ,且 OB = 3 OA = 3 OC OAC 的平分线 AD y 轴于点 D ,过点 A 且垂直于 AD 的直线 l y 轴于点 E ,点 P x 轴下方抛物线上的一个动点,过点 P PF x 轴,垂足为 F ,交直线 AD 于点 H

(1)求抛物线的解析式;

(2)设点 P 的横坐标为 m ,当 FH = HP 时,求 m 的值;

(3)当直线 PF 为抛物线的对称轴时,以点 H 为圆心, 1 2 HC 为半径作 H ,点 Q H 上的一个动点,求 1 4 AQ + EQ 的最小值.

来源:2018年广西柳州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

已知二次函数 y = - x 2 + 6 x - 5

(1)求二次函数图象的顶点坐标;

(2)当 1 x 4 时,函数的最大值和最小值分别为多少?

(3)当 t x t + 3 时,函数的最大值为 m ,最小值为 n ,若 m - n = 3 ,求 t 的值.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题