已知抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( − 3 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上的动点.
(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;
(2)如图1,连接 OP 交 BC 于点 D ,当 S ΔCPD : S ΔBPD = 1 : 2 时,请求出点 D 的坐标;
(3)如图2,点 E 的坐标为 ( 0 , − 1 ) ,点 G 为 x 轴负半轴上的一点, ∠ OGE = 15 ° ,连接 PE ,若 ∠ PEG = 2 ∠ OGE ,请求出点 P 的坐标;
(4)如图3,是否存在点 P ,使四边形 BOCP 的面积为8?若存在,请求出点 P 的坐标;若不存在,请说明理由.
重百商场正销售某品牌的一款等离子宽屏幕电视机,年初时售价定为元,3月份售价降低了元.由于伦敦奥运会的举行,8月份销售看好,故商场决定将售价在3月份的基础上上涨10%.奥运会结束后,由于销售不畅,故商场决定将售价在8月份的基础上下调10%.(1)请用代数式表示该款等离子宽屏幕电视机现在的价格;(2)若年初时售价定为6500元,3月初售价降低了500元,那么该款等离子宽屏幕电视机现在的价格是多少元?
(1)当时,求代数式的值. (2) 已知的值为7 , 求代数式的值
列式并计算:(1)﹣1减去的差乘以﹣7的倒数的积;(2)﹣2、5、﹣9这三个数的和的绝对值比这三个数的绝对值的和小多少?
将0,,,这四个数在数轴上表示出来.并用“<”号连接起来.
已知,如图,抛物线>0)与轴交于点C,与轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.