已知抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( − 3 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上的动点.
(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;
(2)如图1,连接 OP 交 BC 于点 D ,当 S ΔCPD : S ΔBPD = 1 : 2 时,请求出点 D 的坐标;
(3)如图2,点 E 的坐标为 ( 0 , − 1 ) ,点 G 为 x 轴负半轴上的一点, ∠ OGE = 15 ° ,连接 PE ,若 ∠ PEG = 2 ∠ OGE ,请求出点 P 的坐标;
(4)如图3,是否存在点 P ,使四边形 BOCP 的面积为8?若存在,请求出点 P 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)画出将△OAB绕原点逆时针旋转90°后所得的△OA1B1,并写出点A1、B1的坐标;(2)作△OAB关于原点O的中心对称图形,写出对称点、的坐标.
将分别标有数学2,3,5的三张质地,大小完全一样的卡片背面朝上放在桌面上,(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数恰好是35的概率.
确定下列抛物线的开口方向、对称轴和顶点坐标(1) (2)
解方程(1) (2)x2﹣5x﹣6="0"
某商品的进价为每件40元,售价为每件50元,每个月可卖出200件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于进价的140%).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价m定为多少元时,每个月可获得最大利润?最大的月利润是多少元?⑶每件商品的售价m定为多少元时,每个月的利润恰为2160元?根据以上结论,请你直接写出售价m在什么范围时,每个月的利润不低于2160元?