如图,抛物线 y = a x 2 + bx + c 与 x 轴交于 A ( 3 , 0 ) , B 两点(点 B 在点 A 的左侧),与 y 轴交于点 C ,且 OB = 3 OA = 3 OC , ∠ OAC 的平分线 AD 交 y 轴于点 D ,过点 A 且垂直于 AD 的直线 l 交 y 轴于点 E ,点 P 是 x 轴下方抛物线上的一个动点,过点 P 作 PF ⊥ x 轴,垂足为 F ,交直线 AD 于点 H .
(1)求抛物线的解析式;
(2)设点 P 的横坐标为 m ,当 FH = HP 时,求 m 的值;
(3)当直线 PF 为抛物线的对称轴时,以点 H 为圆心, 1 2 HC 为半径作 ⊙ H ,点 Q 为 ⊙ H 上的一个动点,求 1 4 AQ + EQ 的最小值.
如图,墙与墙垂直,在地面的处有一木柱,系着一匹马,已知系马的绳子的长度为,试在图中画出马的活动区域.
的面积为,所在的平面内有一点,当时,点在上;当时,点在内;当时,点在外.
如图,在地往北60m的处有一幢民房,西80m的处有一变电设施,在的中点处有一古建筑.因施工需要必须在处进行一次爆破,为使民房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?
如图,已知半径为的半圆,过直径上一点,作交半圆于点,且,试求的长.
已知等腰(如图),试取斜边上的一点为圆心画图,使点,,分别在所画的圆内、圆外和圆上.