如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).27⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
如右图,△ABC中,AB=AC,绕某点在△ABC所在平面内旋转△ABC,旋转所得图形与原图形一起恰好成一菱形。画出旋转得到的图形,指出旋转中心、旋转角。(不写作法)
已知等腰梯形的上底是cm,下底是cm,高是cm,求它的周长和面积。
下列各式在实数范围内有意义,分别求x的取值范围。
小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上.点H、B、C在同一条 直线上,且PH⊥HC.山坡坡角(即∠ABC)的度数等于度;求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).
要对一块长60米、宽40米的矩形荒地进行绿化和硬化.设计方案如图所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形面积的,求P、Q两块绿地周围的硬化路面的宽