已知直线 交 轴于点 ,交 轴于点 ,二次函数的图象过 , 两点,交 轴于另一点 , ,且对于该二次函数图象上的任意两点 , , , ,当 时,总有 .
(1)求二次函数的表达式;
(2)若直线 ,求证:当 时, ;
(3) 为线段 上不与端点重合的点,直线 过点 且交直线 于点 ,求 与 面积之和的最小值.
综合与探究
如图1所示,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过点 , .
(1)求抛物线的解析式
(2)点 在抛物线的对称轴上,求 的最小值;
(3)如图2所示, 是线段 的上一个动点,过点 垂直于 轴的直线与直线 和抛物线分别交于点 、 .
①若以 , , 为顶点的三角形与 相似,则 的面积为 ;
②若点 恰好是线段 的中点,点 是直线 上一个动点,在坐标平面内是否存在点 ,使以点 , , , 为顶点的四边形是菱形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
注:二次函数 的顶点坐标为 ,
如图,抛物线 与 轴交于 、 两点, 点坐标为 ,与 轴交于点
(1)求抛物线的解析式;
(2)点 在抛物线位于第四象限的部分上运动,当四边形 的面积最大时,求点 的坐标和四边形 的最大面积.
(3)直线 经过 、 两点,点 在抛物线位于 轴左侧的部分上运动,直线 经过点 和点 ,是否存在直线 ,使得直线 、 与 轴围成的三角形和直线 、 与 轴围成的三角形相似?若存在,求出直线 的解析式,若不存在,请说明理由.
已知,抛物线 与 轴交于 、 两点,与 轴交于点 ,抛物线的对称轴是直线 , 为抛物线的顶点,点 在 轴 点的上方,且 .
(1)求抛物线的解析式及顶点 的坐标;
(2)求证:直线 是 外接圆的切线;
(3)在直线 上方的抛物线上找一点 ,使 ,求点 的坐标;
(4)在坐标轴上找一点 ,使以点 、 、 为顶点的三角形与 相似,直接写出点 的坐标.
已知如图,在平面直角坐标系 中,点 、 、 分别为坐标轴上的三个点,且 , , ,
(1)求经过 、 、 三点的抛物线的解析式;
(2)在平面直角坐标系 中是否存在一点 ,使得以点 、 、 、 为顶点的四边形为菱形?若存在,请求出点 的坐标;若不存在,请说明理由;
(3)若点 为该抛物线上一动点,在(2)的条件下,请求出当 的最大值时点 的坐标,并直接写出 的最大值.
如图,已知抛物线 经过 , , 三点.
(1)求该抛物线的解析式;
(2)经过点 的直线交 轴于点 ,交线段 于点 ,若 .
①求直线 的解析式;
②已知点 在该抛物线的对称轴 上,且纵坐标为1,点 是该抛物线上位于第一象限的动点,且在 右侧,点 是直线 上的动点,若 是以点 为直角顶点的等腰直角三角形,求点 的坐标.
如图,抛物线 与 轴交于 、 两点, 点坐标为 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)点 在 轴下方的抛物线上,过点 的直线 与直线 交于点 ,与 轴交于点 ,求 的最大值;
(3)点 为抛物线对称轴上一点.
①当 是以 为直角边的直角三角形时,直接写出点 的坐标;
②若 是锐角三角形,直接写出点 的纵坐标 的取值范围.
抛物线 经过点 和点 ,与 轴交于点 .
(1)求该抛物线的函数表达式;
(2)点 是该抛物线上的动点,且位于 轴的左侧.
①如图1,过点 作 轴于点 ,作 轴于点 ,当 时,求 的长;
②如图2,该抛物线上是否存在点 ,使得 ?若存在,请求出所有点 的坐标;若不存在,请说明理由.
如图,抛物线 与抛物线 开口大小相同、方向相反,它们相交于 , 两点,且分别与 轴的正半轴交于点 ,点 , .
(1)求抛物线 的解析式;
(2)在抛物线 的对称轴上是否存在点 ,使 的值最小?若存在,求出点 的坐标,若不存在,说明理由;
(3) 是直线 上方抛物线 上的一个动点,连接 , , 运动到什么位置时, 面积最大?并求出最大面积.
我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于 轴对称,则把该函数称之为“ 函数”,其图象上关于 轴对称的不同两点叫做一对“ 点”.根据该约定,完成下列各题.
(1)若点 与点 是关于 的“ 函数” 的图象上的一对“ 点”,则 , , (将正确答案填在相应的横线上);
(2)关于 的函数 , 是常数)是“ 函数”吗?如果是,指出它有多少对“ 点”如果不是,请说明理由;
(3)若关于 的“ 函数” ,且 , , 是常数)经过坐标原点 ,且与直线 , ,且 , 是常数)交于 , , , 两点,当 , 满足 时,直线 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
如图,已知抛物线 与 轴的交点为 , ,且与 轴交于 点.
(1)求该抛物线的表达式;
(2)点 关于 轴的对称点为 , 是线段 上的一个动点(不与 、 重合), 轴, 轴,垂足分别为 、 ,当点 在什么位置时,矩形 的面积最大?说明理由.
(3)已知点 是直线 上的动点,点 为抛物线上的动点,当以 、 、 、 为顶点的四边形为平行四边形时,求出相应的点 和点 的坐标.
已知抛物线 经过点 和点 ,与 轴交于点 ,点 为第二象限内抛物线上的动点.
(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;
(2)如图1,连接 交 于点 ,当 时,请求出点 的坐标;
(3)如图2,点 的坐标为 ,点 为 轴负半轴上的一点, ,连接 ,若 ,请求出点 的坐标;
(4)如图3,是否存在点 ,使四边形 的面积为8?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,点 为坐标原点,抛物线 的顶点是 ,将 绕点 顺时针旋转 后得到 ,点 恰好在抛物线上, 与抛物线的对称轴交于点 .
(1)求抛物线的解析式;
(2) 是线段 上一动点,且不与点 , 重合,过点 作平行于 轴的直线,与 的边分别交于 , 两点,将 以直线 为对称轴翻折,得到△ ,设点 的纵坐标为 .
①当△ 在 内部时,求 的取值范围;
②是否存在点 ,使 ,若存在,求出满足条件 的值;若不存在,请说明理由.
如图,抛物线 与直线 分别相交于 , 两点,且此抛物线与 轴的一个交点为 ,连接 , .已知 , .
(1)求抛物线的解析式;
(2)在抛物线对称轴 上找一点 ,使 的值最大,并求出这个最大值;
(3)点 为 轴右侧抛物线上一动点,连接 ,过点 作 交 轴于点 ,问:是否存在点 使得以 , , 为顶点的三角形与 相似?若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.